首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrafast gain recovery dynamics of the first excited state (ES) is studied in an electrically pumped InGaAs quantum-dot amplifier at room temperature and compared with the ground-state (GS) gain dynamics. Pump-probe differential transmission experiments are performed in heterodyne detection and the gain dynamics are investigated as a function of injection current. An ultrafast (<200 fs) initial gain recovery of both GS and ES transition is found, promising for optical signal processing at high bit rates. The obtained results suggest the occurrence of a fast recovery of the state occupation mediated by carrier-carrier scattering as long as a reservoir of carriers in the ESs and wetting layer is present.  相似文献   

2.
Ultrafast gain dynamics in an optical amplifier with an active layer of self-organized quantum dots (QDs) emitting near 1.3$muhbox m$is characterized experimentally in a pump-probe experiment and modeled theoretically on the basis of QD Maxwell–Bloch equations. Experiment and theory are in good agreement and show ultrafast subpicoseconds gain recovery followed by a slower 5 ps recovery. This behavior is found to be mainly caused by longitudinal optical phonon scattering and strongly dependents on electronic structure and confinement energy of the dots. A low amplitude-phase coupling ($alpha$factor) is theoretically predicted and demonstrated in the experiments. The fundamental analysis reveals the underlying physical processes and indicates limitations to QD-based devices.  相似文献   

3.
The ultrafast dynamics of gain and refractive index in an electrically pumped InAs-InGaAs quantum-dot (QD) optical amplifier are measured at room temperature using differential transmission with femtosecond time resolution. Both absorption and gain regions are investigated. While the absorption bleaching recovery occurs on a picosecond time scale, the gain compression recovers with ~100-fs time constant, making devices based on such dots promising for high-speed optical communications  相似文献   

4.
An experimental comparative study of the gain, index variation, and linewidth enhancement factor in 980-nm quantum-well (QW) and quantum-dot (QD) lasers structures, designed for high power applications, is presented. The gain spectra of the QW lasers at high injection level revealed three different transition energies, with a low linewidth enhancement factor (/spl sim/1.2) for E2HH2 transitions. Similar values for the linewidth enhancement factor, ranging between 2.5 and 4.5, were found for QW and QD devices, when comparing at similar values of the peak gain. This result is attributed to the contribution of excited state transitions in the measured QD lasers.  相似文献   

5.
半导体中超快过程的研究   总被引:1,自引:0,他引:1  
用飞秒脉冲激光技术研究了半导体中的超快过程.通过用超快光生电压谱对激光激发载流子的动量弛豫过程进行检测,得到在半导体硅中载流子的动量弛豫时间约为70飞秒,该过程与载流子与载流子的散射几率有关;对于锗硅量子点,由于载流子的散射几率下降,使动量弛豫时间增加至130飞秒.用超快反射谱法测量了载流子的能量弛豫过程和扩散过程,用高能量激光激发得到载流子的能量弛豫时间约为几个皮秒,这与载流子与声子的散射几率密切相关;而用低能量激光激发可得到光生载流子的扩散时间约为1百皮秒量级.  相似文献   

6.
多模量子点阵列的光致荧光(PL)光谱的温度依赖性研究对于实现高效的量子点光电器件有着非常重要的意义.利用速率方程模型模拟不同密度量子点阵列中的载流子动力学过程.研究表明,高密度量子点阵列中不同尺寸量子点族的PL强度表现不同的温度依赖关系;而低密度量子点阵列不同点族PL强度均随温度衰减.高密度量子点阵列中,载流子被热激发到浸润层后,部分地被大量子点再俘获,即在量子点族间转移;低密度量子点阵列中不同量子点族间的载流子转移受到限制.不同量子点族光致荧光强度比的最大值强烈地依赖于量子点的激活能差.  相似文献   

7.
We present a numerical model for the analysis of the chirp dynamics of quantum-dot (QD) semiconductor laser under large signal current modulation. The model is based on the multipopulation rate equation formalism, and it includes all the peculiar characteristics of the active QD material such as the inhomogeneous broadening of the gain spectrum, the presence of an excited state confined in the QDs and the presence of nonconfined states due to the wetting layer and the barrier. In this paper the model is applied to the analysis of the chirp of two QD single-mode lasers emitting from the ground state and from the excited state, respectively. In order to make comparisons of the chirp in various operating conditions, we define some equivalent parameters for quantifying the adiabatic and transient contributions to the chirp. These parameters are then used to analyze the chirp as function of the bias current, of the modulation depth and of the modulation frequency. All the various simulation results show that the carrier accumulation in the QD states, poorly involved in the stimulated emission process and the carrier dynamics in these states, can cause a nonzero chirp under current modulation even for the ideal condition of zero linewidth enhancement factor (or -parameter) at the laser threshold.  相似文献   

8.
The dynamics of electron capture and relaxation in an n-doped quantum-dot (QD) infrared detector structure are studied directly in the time domain using ultrafast intraband-pump-interband-probe differential transmission spectroscopy. Femtosecond midinfrared pulses are used to excite electrons from the doped QDs into the conduction band continuum, and the complete electron distribution functions are monitored as a function of time using an interband probe. Because only electrons are excited and no holes are present, the electron-hole scattering which dominates the relaxation in bipolar systems is not present, and the measurement yields the electron dynamics exclusively. Excitation-dependent electron capture times were measured from 40 to <10 ps with increasing pump intensity. Intradot inter-level relaxation times were observed to be ~100 ps, driven by Auger-type electron-electron scattering. Nanosecond-scale dynamics in the n=1 state were also observed and attributed to transport effects. Our results indicate that the phonon bottleneck in the QDs is circumvented by Auger scattering; nevertheless, the electron dynamics in the unipolar device are found to be slower than those observed in bipolar systems, which confirms the significance of the holes in the carrier relaxation in bipolar devices. The results also support the improved operation of QD infrared photodetectors relative to quantum-well-based devices  相似文献   

9.
InAs/GaAs自组织量子点激发态的激射   总被引:1,自引:0,他引:1  
将覆盖层引入生长停顿的量子点结构作为激光器有源区来研究量子点激光器受激发射机制 .由于强烈的能带填充效应 ,光致发光谱和电致发光谱中观察到对应于量子点激发态跃迁的谱峰 ,大激发时其强度超过基态跃迁对应的谱峰 .最后激发态跃迁达到阈值条件 ,激射能量比结构相似但不含量子点的激光器低 ,表明量子点激光器中首先实现受激发射是量子点的激发态  相似文献   

10.
The optical linewidth enhancement factor (LEF) of a p-doped quantum-dot (QD) laser is measured below threshold and compared with a theoretical calculation. The optical gain, refractive index, and LEF are well matched with our theoretical model when the thermal effect is isolated by an additional pulse current measurement of the LEF. We also theoretically calculate the LEF of an undoped QD Fabry-Pe/spl acute/rot (FP) laser assuming that the structure of the undoped FP QD laser is the same as that of the p-doped QD FP laser except the p-type doping. The changes in modal gain and refractive index due to the respective QD ground and excited states are calculated. Based on the theoretical results, we show that the LEF of the p-doped QD laser is smaller than that of the undoped QD laser due to the reduced transparency carrier density.  相似文献   

11.
将覆盖层引入生长停顿的量子点结构作为激光器有源区来研究量子点激光器受激发射机制.由于强烈的能带填充效应, 光致发光谱和电致发光谱中观察到对应于量子点激发态跃迁的谱峰,大激发时其强度超过基态跃迁对应的谱峰.最后激发态跃迁达到阈值条件, 激射能量比结构相似但不含量子点的激光器低,表明量子点激光器中首先实现受激发射是量子点的激发态.  相似文献   

12.
A theoretical and experimental study of a particular transverse-electric (TE) mode lasing mechanism of a tunneling injection InP quantum-dot (QD) laser is reported. In the experiment, the TE mode lasing action takes place at the first excited state of InP biaxially compressively strained QDs. This QD state is coupled to the ground state of two tensile-strained InGaP quantum wells (QWs) although the tensile-strained QW structure favors the transverse-magnetic (TM) polarization light emission. The measured TE and TM modal gain spectra show a typical QW gain evolution behavior at low injection currents, which can be theoretically modeled by the quasi-equilibrium of carrier distribution. When the injection current is increased near threshold, a TE gain narrowing and a simultaneous TM gain pinning are observed in the measured modal gain spectra, which cannot be explained via the quasi-equilibrium model. We propose a polarization-dependent photon-mediated carrier redistribution in the QD-coupled-QW structure to explain this TE and TM gain evolution behavior. When the injection current is just below threshold, the strong carrier depletion via stimulated emission due to coupling between the InP QD and InGaP QW states plays an important role in carrier redistribution, which depends on the optical transition energy and polarization. This concept of the polarization-dependent photon-mediated carrier redistribution explains the TE gain narrowing and TM gain pinning behavior. In addition, a coupled rate equation model is established, and the calculated polarization power ratio based on the coupled rate equations explains the experimental observation.  相似文献   

13.
We report photoluminescence (PL), time-resolved PL, and PL excitation experiments on InAs/GaAs quantum dots (QDs) of different size as a function of temperature. The results indicate that both the inhomogeneous properties of the ensemble and the intrinsic properties of single QDs are important in understanding the temperature-dependence of the optical properties. With increasing temperature, excitons are shown to assume a local equilibrium distribution between the localized QD states, whereas the formation of a position-independent Fermi-level is prevented by carrier-loss to the barrier dominating thermally stimulated lateral carrier transfer. The carrier capture rate is found to decrease with increasing temperature and, at room temperature, long escape-limited ground state lifetimes of some 10 ps are estimated. PL spectra excited resonantly in the ground state transition show matching ground state absorption and emission, indicating the intrinsic nature of exciton recombination in the QDs. Finally, the PL excitation spectra are shown to reveal size-selectively the QD absorption, demonstrating the quantum-size effect of the excited state splitting.  相似文献   

14.
A numerical model for the investigation of the ultrafast gain properties in asymmetrical multiple quantum-well semiconductor optical amplifiers has been developed considering propagation of ultrashort optical pulses with different wavelengths. The dynamics of the number of carriers and carrier temperature are investigated for each quantum well. The results agree with the experimental results of pump probe measurements with different wavelengths. It is shown that gain recovery is slower for higher energy wells for pump signals of all wavelengths.  相似文献   

15.
It is essentially important to understand the temperature dependence of the photoluminescence of multimodal quantum dot (QD) arrays for the realization of efficient photonic devices. In this paper, the dynamics processes of different density multimodal QD arrays were fitted by using the rate equation model. It is shown that, in high density QD arrays, the intensity of photoluminescence of different QD families has different temperature dependence, and the intensity of photoluminescence is quenched as the temperature increases in low density QD arrays. In high density QD arrays, as the temperature increases, the carriers will be thermally excited into the wetting layer from QDs, and then some of them will be recaptured by the big scale QDs; carrier coupling takes place between the different QD families, while in low density QD arrays, the carrier transfer between different QD families will be limited. Temperature dependence of the maximum of the ratio of photoluminescence intensity of different QD families strongly depends on the difference of thermal activation energies.  相似文献   

16.
Detailed theoretical analysis of longitudinal spatial hole burning in quantum-dot (QD) lasers is given. Unlike conventional semiconductor lasers, escape of thermally excited carriers from QDs, rather than diffusion, is shown to control the smoothing-out of the spatially nonuniform population inversion and multimode generation in QD lasers. The multimode generation threshold is calculated as a function of structure parameters (surface density of QDs, QD size dispersion, and cavity length) and temperature. A decrease in the QD size dispersion is shown to increase considerably the relative multimode generation threshold. The maximum tolerable QD size dispersion and the minimum tolerable cavity length, at which lasing is possible to attain, are shown to exist. Concurrent with the increase of threshold current, an increase of the multimode generation threshold is shown to occur with a rise in temperature. Ways to optimize the QD laser, aimed at maximizing the multimode generation threshold, are outlined  相似文献   

17.
Electroluminescence spectroscopy has been used in a wide range of temperatures (77–300 K) and driving current densities to study a laser heterostructure based on vertically coupled self-assembled InGaAs quantum dots (QD). It has been found that lasing occurs via the QD ground state in the entire temperature range. The temperature-independent position of the emission peak corresponding to the second excited state in QDs is explained.  相似文献   

18.
We investigate the ultrafast gain dynamics in broad-area semiconductor lasers with particular emphasis on spatial and spatiotemporal effects. We present a spatially resolved femtosecond pump-probe experiment which allows us to measure the compression and recovery of the gain with 250-fs temporal and 15 /spl mu/m spatial resolution. We find a significant spatial variation of the gain recovery time across the lateral laser coordinate indicating an influence of the extended laser structure on the ultrafast carrier relaxation. Moreover, we are able to follow the spatiotemporal relaxation of the ultrafast spatiospectral gain saturation within the extended semiconductor active area. We find diffusion-like broadening of the locally suppressed gain on two distinct ultrafast timescales, within several picoseconds and several tens of picoseconds, resulting from an interplay between intraband relaxation, spatial holeburning, and light propagation. Supported by microscopic modeling, our results provide insight into the different mechanisms and timescales associated with the spatiotemporal carrier dynamics. These findings are essential for the design of laterally extended semiconductor active devices for ultrafast optical signal processing applications.  相似文献   

19.
We investigate the ultrafast gain dynamics in broad-area semiconductor lasers with particular emphasis on spatial and spatiotemporal effects. We present a spatially resolved femtosecond pump–probe experiment which allows us to measure the compression and recovery of the gain with 250-fs temporal and 15$muhbox m$spatial resolution. We find a significant spatial variation of the gain recovery time across the lateral laser coordinate indicating an influence of the extended laser structure on the ultrafast carrier relaxation. Moreover, we are able to follow the spatiotemporal relaxation of the ultrafast spatiospectral gain saturation within the extended semiconductor active area. We find diffusion-like broadening of the locally suppressed gain on two distinct ultrafast timescales, within several picoseconds and several tens of picoseconds, resulting from an interplay between intraband relaxation, spatial holeburning, and light propagation. Supported by microscopic modeling, our results provide insight into the different mechanisms and timescales associated with the spatiotemporal carrier dynamics. These findings are essential for the design of laterally extended semiconductor active devices for ultrafast optical signal processing applications.  相似文献   

20.
A rate equation model preserving charge neutrality for quantum-dot semiconductor optical amplifiers (QD-SOAs) is established to investigate the nonlinear gain dynamics in the saturation regime. The static gain of QD-SOA is calculated assuming overall charge neutrality and compared with that without overall charge neutrality. Optical modulation response and nonlinear phase fluctuation through saturated QD-SOAs are calculated numerically based on a small-signal analysis. The gain dynamics of QD-SOAs are strongly dependent on the current injection level. The carrier reservoir in the wetting layer and continuum state is necessary for QD-SOAs to operate with high gain, high saturation power, and ultrafast gain recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号