共查询到20条相似文献,搜索用时 78 毫秒
1.
目的 混合像元问题在高光谱遥感图像处理分析中普遍存在,非负矩阵分解的方法被引入到高光谱图像解混中。本文提出结合空间光谱预处理和约束非负矩阵分解的混合像元分解流程。方法 结合空间光谱预处理的约束非负矩阵分解,如最小体积约束、流行约束等,通过加入邻域的空间和光谱信息进行预处理获得更优的预选端元,从而对非负矩阵分解的解混结果进行优化。结果 在5组不同信噪比的模拟数据实验中,空间预处理(SPP)和空间光谱预处理(SSPP)均能够有效提高约束非负矩阵分解(最小体积约束的非负矩阵分解和图正则非负矩阵分解)的解混结果,其中SPP在不同信噪比的情况下都能优化约束非负矩阵分解的结果,而SSPP在低信噪比的情况下,预处理效果更佳。利用美国内华达州Cuprite矿区数据进行真实数据实验,SPP提高了约束非负矩阵分解的解混精度,而SSPP在复杂场景下,解混精度更佳。模拟数据和真实数据的实验均表明,空间光谱预处理能够有效地提高约束非负矩阵分解的解混精度,特别是对于信噪比较低的情况下,融合空间和光谱信息对噪声有很好的鲁棒性。结论 本文对约束非负矩阵分解的解混算法添加空间光谱预处理,利用高光谱遥感数据的空间和光谱信息,优化预选端元,加入空间光谱预处理的非负矩阵解混实验流程,在复杂场景情况下,对噪声具有较好的鲁棒性。 相似文献
2.
目的 受到传感器光谱响应范围的影响,可见光区域和近红外区域(400~2 500 nm)的高光谱数据通常使用不同的感光芯片进行成像,现有这一光谱区域典型的高光谱成像系统,如AVIRIS (airborne visible infrared imaging spectrometer)成像光谱仪,通常由多组感光芯片组成,整个成像系统成本和体积通常比较大,严重限制了该谱段高光谱探测技术的发展。为了能够扩展单感光芯片成像系统获得的高光谱图像的光谱范围,本文探索基于卷积神经网络的近红外光谱数据预测技术。方法 结合AVIRIS成像光谱仪的光谱配置,设计了基于残差学习的红外谱段图像预测网络,利用计算成像的方式从可见光范围的高光谱图像预测出近红外波段的光谱图像,并在典型的卫星高光谱遥感数据上进行红外光谱预测重构和基于重构的数据分类实验,以验证论文提出的红外光谱数据预测技术的可行性以及有效性。结果 本文设计的预测网络在Cuprite数据集上得到的预测近红外图像峰值信噪比为40.145 dB,结构相似度为0.996,光谱角为0.777 rad;在Salinas数据集上得到的预测近红外图像峰值信噪比为39.55 dB,结构相似性为0.997,光谱角为1.78 rad。在分类实验中,相比于只使用可见光图像,利用预测的近红外图像使得支持向量机(support vector machine,SVM)的准确率提升了0.6%,LeNet的准确率提升了1.1%。结论 基于AVIRIS传感器获取的两组典型卫星高光谱数据实验表明,本文提出的红外光谱数据预测技术不仅可基于计算成像的方式扩展可见光光谱成像系统的光谱成像范围,对于减小成像系统体积和质量具有重要意义,而且可有效提高可见光区域光谱图像数据在典型应用中的处理性能,对于提高高光谱数据处理精度提供新的技术支撑。 相似文献
3.
4.
基于地面实测高光谱数据的三江源中东部草地植被光谱特征研究 总被引:1,自引:0,他引:1
草地不仅是畜牧业的生产基地,而且是生态安全屏障保护和牧民生活与草原文化传承的基础,具有生态、生产和生活功能。然而,草地日益退化导致的生态经济问题越来越突出。因此,实时、准确地监测草地的退化具有重要意义。根据所测定的各种地面植被的光谱数据,分析了三江源中东部典型草原区常见草种的光谱特性;利用一阶微分法、连续统去除法和归一化微分比的方法对草地植被光谱反射曲线进行了处理,提取了典型草地植被的光谱特征;通过光谱分析法能准确识别藏嵩草和小嵩草优势种,取得了较好的精度。为高光谱遥感草地监测提供了有力依据。 相似文献
5.
目的 随着高光谱成像技术的飞速发展,高光谱数据的应用越来越广泛,各场景高光谱图像的应用对高精度详细标注的需求也越来越旺盛。现有高光谱分类模型的发展大多集中于有监督学习,大多数方法都在单个高光谱数据立方中进行训练和评估。由于不同高光谱数据采集场景不同且地物类别不一致,已训练好的模型并不能直接迁移至新的数据集得到可靠标注,这也限制了高光谱图像分类模型的进一步发展。本文提出跨数据集对高光谱分类模型进行训练和评估的模式。方法 受零样本学习的启发,本文引入高光谱类别标签的语义信息,拟通过将不同数据集的原始数据及标签信息分别映射至同一特征空间以建立已知类别和未知类别的关联,再通过将训练数据集的两部分特征映射至统一的嵌入空间学习高光谱图像视觉特征和类别标签语义特征的对应关系,即可将该对应关系应用于测试数据集进行标签推理。结果 实验在一对同传感器采集的数据集上完成,比较分析了语义—视觉特征映射和视觉—语义特征映射方向,对比了5种基于零样本学习的特征映射方法,在高光谱图像分类任务中实现了对分类模型在不同数据集上的训练和评估。结论 实验结果表明,本文提出的基于零样本学习的高光谱分类模型可以实现跨数据集对分类模型进行训练和评估,在高光谱图像分类任务中具有一定的发展潜力。 相似文献
6.
基于经验模分解高光谱图像数据尺度变换的光谱保真性分析 总被引:2,自引:0,他引:2
经验模分解是具有自适应性特点的尺度变换方法。高光谱图像数据近乎连续的光谱是开展信息提取的重要信息来源,然而尺度变换会使光谱发生变化。因此,分析EMD尺度变换后高光谱图像数据的光谱保真性具有重要意义。应用CHRIS高光谱图像数据,使用光谱相关系数、光谱偏差、光谱相对偏差和光谱角等评价指标,开展EMD升尺度图像及其典型地物的光谱保真性实验,并将EMD与Mallat小波变换光谱保真性比较。实验结果得出:11~10级EMD尺度变换后图像整体光谱保真性都较好,相关系数均在0.979以上,偏差小于55,相对偏差小于0.036,光谱角在0.041以内;2图像光谱保真性随EMD尺度变换次数增加而略有降低,且前4级变换光谱失真相对明显,后续降幅微弱;31~10级尺度变换后7种湿地典型地物的光谱保真性都较好,其中芦苇和河流的光谱保真程度较突出,养殖水面的相对不理想;4EMD与小波变换光谱保真性比较,随着变换次数的增加EMD表现出相对稳定且较小的光谱失真。 相似文献
7.
高光谱图像分类是高光谱遥感的一项重要内容。然而,由于高光谱数据光谱波段信息丰富,且仅对材质信息敏感等特性,导致高光谱分类中易出现“维度灾难”、对高度信息不敏感等问题,这使得高光谱图像分类面临巨大的挑战。为解决上述问题,论文设计了一种双路DenseNet网络(Double-Branch DenseNet,DBD)。该网络其中一路对高光谱数据进行特征处理,压缩光谱维度,降低“维度灾难”的影响,并同步提取高光谱数据的光谱特征和空间特征;另一路通过密集连接提取雷达数据的高程特征。两路特征进行特征级融合,得到具有高程信息的高光谱特征,从而进行分类。通过实验证明,将富含高程信息的雷达数据与富含光谱信息的高光谱数据融合后进行分类的分类结果要优于单纯使用高光谱数据进行分类。 相似文献
8.
10.
11.
基于方向图的指纹图像处理算法 总被引:3,自引:0,他引:3
一引言从指纹图像的局部放大图(图1(a))中,可以看到指纹图像具有以下特点:(1)在局部范围内,指纹纹线具有一致的方向性;(2)在局部范围内,指纹纹线的宽度基本相同;(3)在局部范围内,指纹纹线间的距离基本相同。根据这些特点,我们可以建立一个指纹局部的 相似文献
12.
13.
14.
Hyperspectral image (HSI) with high spectral resolution often suffers from low spatial resolution owing to the limitations of imaging sensors. Image fusion is an effective and economical way to enhance the spatial resolution of HSI, which combines HSI with higher spatial resolution multispectral image (MSI) of the same scenario. In the past years, many HSI and MSI fusion algorithms are introduced to obtain high-resolution HSI. However, it lacks a full-scale review for the newly proposed HSI and MSI fusion approaches. To tackle this problem, this work gives a comprehensive review and new guidelines for HSI–MSI fusion. According to the characteristics of HSI–MSI fusion methods, they are categorized as four categories, including pan-sharpening based approaches, matrix factorization based approaches, tensor representation based approaches, and deep convolution neural network based approaches. We make a detailed introduction, discussions, and comparison for the fusion methods in each category. Additionally, the existing challenges and possible future directions for the HSI–MSI fusion are presented. 相似文献
15.
对当前国际经典和前沿的6种代表性的端元提取算法进行比较研究,包括SPP-N-FINDR、VCA、SPICE、PCOMMEND、MVSA和MVC-NMF,通过理论和实验两种方式对这些算法进行综合性对比和分析,总结其优势和存在的问题。通过模拟和真实数据实验得出:SPP-N-FINDR算法的抗噪声能力不如其他5种算法;VCA和MVSA的稳定性较好;MVC-NMF和SPICE无需知道端元数目,且能直接得出丰度矩阵,自动化程度较高;PCOMMEND在真实高光谱图像中提取端元的结果最好,能直接得出丰度矩阵,但若端元数量为素数时精度会下降。研究成果将为今后围绕这些算法的相关研究提供必要的理论支持和参考。 相似文献
16.
17.
Leonardo Santurri 《Journal of Real-Time Image Processing》2006,1(2):131-141
This paper focuses on a procedure for the assessment of spectral aliasing in hyper-spectral data acquired by push-broom spectrometers. The procedure is based on a push-broom spectrometer model that simulates acquired spectra by taking into account only the instrument parameters; aliasing is measured by means of some figures of merit considered among those proposed in literature. Quantitative evaluations have been performed on simulated spectra both with and without ideal atmospheric and radiometric correction. Results are presented in this paper; the impact of spectrometer slit size on aliasing appearance is also addressed. 相似文献
18.
Jeff Settle 《Remote sensing of environment》2004,90(2):235-242
This note investigates the structure of two data sets of highly resolved directional-reflectance of vegetation canopies, obtained with a spectroradiometer mounted on a goniometer. One canopy was a grass lawn (largely erectophile) and the other was of watercress (largely planophile). The data sets consist of radiance measurements in 356 spectral bands in visible and near-infrared wavelengths, and in either 61 or 358 different directions, but avoiding directions very close to the hot-spot. The singular value decompositions of the two-dimensional data sets are used to investigate their intrinsic dimensionality, and so also the redundancy contained in the data. A single directional function and a single spectral function together fit the data quite well in a least squares sense, with the root mean square residual amounting to one part in a hundred of the total sum of squares of the data. However, the residuals indicate that one or two further pairs of functions are needed to characterize the systematic variation of spectral reflectance with direction (or equivalently, of the angular reflectance distribution with wavelength). Three such pairs of functions are found to fit the data to better than one part in a thousand, with the residuals then showing no systematic structure. The consequences for atmospheric correction of multi-view remote sensing data are discussed. 相似文献
19.
Xin Miao Peng Gong Sarah Swope Ruiliang Pu Raymond Carruthers Gerald L. Anderson Jill S. Heaton C.R. Tracy 《Remote sensing of environment》2006,101(3):329-341
The invasive weed yellow starthistle (Centaurea solstitialis) has infested between 4 and 6 million hectares in California. It often forms dense infestations and rapidly depletes soil moisture, preventing the establishment of other species. Precise assessment of its canopy cover, especially low-density abundance in the earlier growing season, is the key to effective management. Compact Airborne Spectrographic Imager 2 (CASI-2) hyperspectral imagery was acquired at the western edge of California's Central Valley grasslands on July 15, 2003. Four linear spectral mixture models (LSMM) were investigated from the original CASI-2 data. Band selections based upon residual analysis and feature extraction (PCA) were further explored to reduce the data dimension. All approaches, except four band-selection unconstrained LSMMs, provide consistent results. The uncertainty of the PCA-based LSMM was estimated through a Monte-Carlo simulation. The maximum standard deviation was approximately 11%. The results suggest that unmixing CASI-2 imagery could be used for estimating and mapping yellow starthistle for larger regional areas. 相似文献
20.
Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique 总被引:2,自引:0,他引:2
The concept of imaging spectrometry, or hyperspectral imaging, is becoming increasingly popular in scientific communities in recent years. Hyperspectral imaging data covering the spectral region between 0.4 and 2.5 μm and collected from aircraft and satellite platforms have been used in the study of the earth's atmosphere, land surface, and ocean color properties, as well as on planetary missions. In order to make such quantitative studies, accurate radiometric and spectral calibrations of hyperspectral imaging data are necessary. Calibration coefficients for all detectors in an imaging spectrometer obtained in a laboratory may need to be adjusted when applied to data obtained from an aircraft or a satellite platform. Shifts in channel center wavelengths and changes in spectral resolution may occur when an instrument is airborne or spaceborne due to vibrations, and to changes in instrument temperature and pressure. In this paper, we describe an algorithm for refining spectral calibrations of imaging spectrometer data using observed features in the data itself. The algorithm is based on spectrum-matching of atmospheric water vapor, oxygen, and carbon dioxide bands, and solar Fraunhofer lines. It has been applied to real data sets acquired with airborne and spaceborne imaging spectrometers. 相似文献