首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-spherical Li(Ni1/3Co1/3Mn1/3)O2 powders have been synthesized using a two-step drying method with 5% excess LiOH at 800 °C for 20 h. The tap-density of the powder obtained is 2.95 g cm−3. This value is remarkably higher than that of the Li(Ni1/3Co1/3Mn1/3)O2 powders obtained by other methods, which range from 1.50 g cm−3 to 2.40 g cm−3. The precursor and Li(Ni1/3Co1/3Mn1/3)O2 are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the precursor are 2+, 3+ and 4+, respectively. XRD results show that the Li(Ni1/3Co1/3Mn1/3)O2 material obtained by the two-step drying method has a well-layered structure with a small amount of cation mixing. SEM confirms that the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained by this method are uniform. The initial discharge capacity of 167 mAh g−1 is obtained between 3 V and 4.3 V at a current of 0.2 C rate. The capacity of 159 mAh g−1 is retained at the end of 30 charge-discharge cycle with a capacity retention of 95%.  相似文献   

2.
Uniform and spherical Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ powders were synthesized via NH3 and F coordination hydroxide co-precipitation. The effect of F coordination agent on the morphology, structure and electrochemical properties of the Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ were studied. The morphology, size, and distribution of (Ni1/3Co1/3Mn1/3)(OH)(2−δ)Fδ particle diameter were improved in a shorter reaction time through the addition of F. The study suggested that the added F improves the layered characteristics of the lattice and the cyclic performance of Li(Ni1/3Co1/3Mn1/3)O2 in the voltage range of 2.8-4.6 V. The initial capacity of the Li(Ni1/3Co1/3Mn1/3)O1.96F0.04 was 178 mAh g−1, the maximum capacity was 186 mAh g−1 and the capacity after 50 cycles was 179 mAh g−1 in the voltage range of 2.8-4.6 V.  相似文献   

3.
S. Zhang  C. Deng  B.L. Fu  L. Ma 《Powder Technology》2010,198(3):373-400
A carbonate co-precipitation method was employed to prepare spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material. The precursor, [Ni1/3Co1/3Mn1/3]CO3, was prepared using ammonia as chelating agent under CO2 atmosphere. The spherical Li[Ni1/3Co1/3Mn1/3]O2 was prepared by mixing the precalcined [Ni1/3Co1/3Mn1/3]CO3 with LiOH followed by high temperature calcination. The preparation conditions such as ammonia concentration, co-precipitation temperature, calcination temperature and Li/[Ni1/3Co1/3Mn1/3] ratio were varied to optimize the physical and electrochemical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2. The structural, morphological, and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2 were characterized by XRD, SEM, and galvanostatic charge-discharge cycling. The optimized material has a spherical particle shape and a well ordered layered structure, and it also has an initial discharge capacity of 162.7 mAh g− 1 in a voltage range of 2.8-4.3 V and a capacity retention of 94.8% after a hundred cycles. The optimized ammonia concentration, co-precipitation temperature, calcination temperature, and Li/[Ni1/3Co1/3Mn1/3] ratio are 0.3 mol L− 1, 60 °C, 850 °C, and 1.10, respectively.  相似文献   

4.
Sen Zhang 《Electrochimica acta》2007,52(25):7337-7342
Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by mixing metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2, with 6% excess LiOH followed by calcinations. The (Ni1/3Co1/3Mn1/3)(OH)2 with secondary particle of about 12 μm was prepared by hydroxide co-precipitation. The tap density of the obtained Li[Ni1/3Co1/3Mn1/3]O2 powder was 2.56 ± 0.21 g cm−3. The powder was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size distribution (PSD) and galvanostatic charge-discharge cycling. The XRD pattern of Li[Ni1/3Co1/3Mn1/3]O2 revealed a well ordered hexagonal layered structure with low cation mixing. Secondary particles with size of 13-14 μm and primary particles with size of about 1 μm can be identified from the SEM observations. In the voltage range of 2.8-4.3 V, the initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 electrode was 166.6 mAh g−1, and 96.5% of the initial capacity was retained after 50 charge-discharge cycling.  相似文献   

5.
We present the mechanism for the synthesis of a layered Li(Ni1/3Co1/3Mn1/3)O2 compound by a modified radiated gel method. Pure-phase Li(Ni1/3Co1/3Mn1/3)O2 material was achieved when the polymer gel was calcined at 900 °C between 15 and 30 h. The unit cell parameter c decreased, and a varied slightly with increased sintering time. Electrochemical characterization revealed that the optimized sample (25 h) had a high initial discharge capacity of 188 mAh/g (2.8-4.5 V, 20 mA/g), an excellent capacity retention of 90.1% after 30 cycles and a good rate performance.  相似文献   

6.
Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 (z = 0, 0.04) positive electrode materials were synthesized via a co-precipitation method. These materials have α-NaFeO2 () structure, as confirmed by X-ray diffraction (XRD) studies. Cation mixing in Li layer seemed to be decreased by Mg substitution as examined by Rietveld refinements of XRD data. Spherical morphologies were observed for the as-synthesized final products by scanning electron microscopy. Their electrochemical properties during charge and discharge were discussed. When magnesium ions are substituted, the initial reversible capacity reduced. However, the substitution for Mn sites in Li[Ni1/3Co1/3Mn1/3]O2 did not decrease the capacity because Mn sites substitution did not result in loss of electroactive elements in the compound. Differential scanning calorimetric studies showed the exothermic peaks of the charged electrode Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 (z = 0.04) were significantly smaller than that of Li[Ni1/3Co1/3Mn1/3]O2, which means that thermal stability was greatly improved by Mg substitution even at highly delithiated state.  相似文献   

7.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

8.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

9.
C. Deng  L. Liu  K. Sun  D. Sun 《Electrochimica acta》2008,53(5):2441-2447
The layered Li[Ni1/3Co1/3Mn1/3]O2 powder with good crystalline and spherical shape was prepared by hydroxide co-precipitation method. The effects of pH value, NH4OH amount, calcination temperature and extra Li amount on the morphology, structure and electrochemical properties of the cathode material were investigated in detail. SEM results indicate that pH value affected both the morphology and the property of the cathode material, and the highest discharge capacity in the first cycle of 163 mAh g−1 (2.8-4.3 V) was obtained at pH value was 12. On the contrary, the NH4OH amount, which was used as a chelating agent, only affected the particle size distribution of the material. The calcination temperatures caused great difference in the structure and property of layered Li[Ni1/3Co1/3Mn1/3]O2, and the best electrochemical properties were obtained at the calcination temperature of 800 °C. Extra Li amount not only caused difference in the material structure, but also affected their electrochemical properties. With increasing Li amount, the lattice parameters (a and c) increased monotonously, and the highest first cycle coulombic efficiency (the ratio of discharge capacity to charge capacity in the first cycle) was obtained with the Li/M of 1.10. Therefore, the optimum synthetic conditions for the hydroxide co-precipitation reaction were: pH value was 12, NH4OH amount was 0.36 mol L−1, calcination temperature was 800 °C and the Li/M molar ratio was 1.10.  相似文献   

10.
LiNi1/3Co1/3Mn1/3O2 and LiCoO2 cathode materials were synthesized by using a supercritical water (SCW) method with a metal salt solution in a batch reactor. Stoichiometric LiNi1/3Co1/3Mn1/3O2 was successfully synthesized in a 10-min reaction without calcination, while overlithiated LiCoO2 (Li1.15CoO2) was synthesized using the batch SCW method. The physical properties and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 were compared to those of Li1.15CoO2 by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests. The XRD pattern of LiNi1/3Co1/3Mn1/3O2 was found to be similar to that of Li1.15CoO2, showing clear splitting of the (0 0 6)/(1 0 2) and (1 0 8)/(1 1 0) peak pairs as particular characteristics of the layered structure. In addition, both cathode powders showed good crystallinity and phase purity, even though a short reaction time without calcination was applied to the SCW method. The initial specific discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders at a current density of 0.24 mA/cm2 in 2.5-4.5 V were 149 and 180 mAh/g, and their irreversible capacity loss was 20 and 17 mAh/g, respectively. The discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders decreased with cycling and remained at 108 and 154 mAh/g after 30 cycles, which are 79% and 89% of the initial capacities. Compared to the overlithiated LiCoO2 cathode powders, the LiNi1/3Co1/3Mn1/3O2 cathode powders synthesized by SCW method had better electrochemical performances.  相似文献   

11.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

12.
In this study, the LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the contents of LiNi1/3Mn1/3Co1/3O2 in the mixed cathode increases, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability deteriorated. On the contrary, the rate capability of the cathode enhanced but the reversible specific capacity and cycleability deteriorated, according to increasing the contents of LiCoO2 in the mixed cathode. The cell of LiCoO2/LiNi1/3Mn1/3Co1/3O2 (50:50, wt.%) mixed cathode delivers a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell shows very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.  相似文献   

13.
A novel Li[Ni0.67Co0.15Mn0.18]O2 cathode material encapsulated completely within a concentration-gradient shell was successfully synthesized via co-precipitation. The Li[Ni0.67Co0.15Mn0.18]O2 has a core of Li[Ni0.8Co0.15Mn0.05]O2 that is rich in Ni, a concentration-gradient shell having decreasing Ni concentration and increasing Mn concentration toward the particle surface, and a stable outer-layer of Li[Ni0.57Co0.15Mn0.28]O2. The electrochemical and thermal properties of the material were investigated and compared to those of the core Li[Ni0.8Co0.15Mn0.05]O2 material alone. The discharge capacity of the concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 electrode increased with increasing upper cutoff voltage to 4.5 V, and cells with this cathode material delivered a very high capacity, 213 mAh/g, with excellent cycling stability even at 55 °C. The enhanced thermal and lithium intercalation stability of the Li[Ni0.67Co0.15Mn0.18]O2 was attributed to the gradual increase in tetravalent Mn concentration and decrease in Ni concentration in the concentration-gradient shell layer.  相似文献   

14.
A series of LiNi1/3Mn1/3Co1/3O2 samples with α-NaFeO2 structure belonging to the D3d5 space group were synthesized using tartaric acid as a chelating agent by wet-chemical method. Different acid to metal-ion ratios R have been used to investigate the effect of this parameter on the physical and electrochemical properties. We have characterized the reaction mechanism, the structure, and morphology of the powders by TGA, XRD, SEM and TEM imaging, completed by magnetic measurements, Raman scattering spectroscopy, and complex impedance experiments. We find that the LiNi1/3Mn1/3Co1/3O2 sintered at 900 °C for 15 h with an acid to metal-ion ratio R = 2 was the optimum condition for this synthesis. For this optimized sample, only 1.3% of nickel-ions occupied the 3b Wyckoff site of the lithium-ions sublattice. The electrochemical performance has been investigated using a coin-type cell containing Li metal as the anode. The electronic performance is correlated to the concentration of the Ni(3b) defects that increase the charge transfer resistance and reduce the lithium diffusion coefficient. The optimized cell delivered an initial discharge capacity of 172 mAh g−1 in the cut-off voltage of 2.8-4.4 V, with a coulombic efficiency of 93.4%.  相似文献   

15.
A novel method to improve the cycling performance of LiCo1/3Ni1/3Mn1/3O2 in lithium-ion batteries by 1.0 wt.% CeO2-coating is presented in this work. The crystalline structure and morphology of the synthesized powder have been characterized by XRD, SEM, TEM and their electrochemical performances were evaluated by CV, EIS and galvonostatic charge/discharge tests. It is found that CeO2 forms a layer on the surface of LiCo1/3Ni1/3Mn1/3O2 without destroying the crystal structure of the core material. Electrochemical test indicates that CeO2-coating could improve the cycling performance of LiCo1/3Ni1/3Mn1/3O2. At room temperature, the capacity retention of 1.0 wt.% CeO2-coated material is 93.2% after 12 cycles at 3.0 C while that of the bare sample is only 86.6%. ICP-OES proves the coating layer could protect the dissolution of the transition metal ions from LiCo1/3Ni1/3Mn1/3O2. From the analysis of EIS, the improvement of cycle ability could be attributed to the suppression of the reaction between cathode and electrolyte.  相似文献   

16.
Spherical Li[Ni1/3Co1/3Mn1/3]O2 powders were synthesized from LiOH·H2O and coprecipitated spherical metal hydroxide, (Ni1/3Mn1/3Co1/3)(OH)2 and coated with Al(OH)3. The Al(OH)3-coated Li[Ni1/3Co1/3Mn1/3]O2 showed a capacity retention of 80% at 320 mA g−1 (2 C-rate) based on 20 mA g−1 (0.1 C-rate), while the pristine Li[Ni1/3Co1/3Mn1/3]O2 delivered only 45% at the same current density. Also, unlike pristine Li[Ni1/3Co1/3Mn1/3]O2, the Al(OH)3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode exhibits excellent rate capability and good thermal stability.  相似文献   

17.
J. Jiang 《Electrochimica acta》2006,51(17):3413-3416
The properties of graphite/Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3, y = 1/12 and 1/6) Li-ion cells are reported. There is an extended plateau near 4.5 V during the first charging of the cells that corresponds to the simultaneous removal of Li and oxygen from the Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3, y = 1/12 and 1/6) electrodes. The release of this oxygen directly within a Li-ion cell has been a cause for concern. However, it was found that subsequent to O2 release, Li-ion cells delivered a high reversible positive electrode specific capacity near 250 mAh/g at C/30 between 2.5 and 4.8 V, the cells did not display increased irreversible capacity relative to counterparts having Li metal negative electrodes and the cells retained 85% of their initial capacity after 70 cycles at C/6 between 2.5 and 4.6 V. Therefore, the O2 released during the first charge does not significantly impact the electrochemical properties of graphite/Li[(Ni0.5Mn0.5)xCoy(Li1/3Mn2/3)1/3]O2 (x + y = 2/3) lithium-ion cells.  相似文献   

18.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

19.
K.M. Shaju 《Electrochimica acta》2003,48(11):1505-1514
Layered Li(Ni1/2Mn1/2)O2 was prepared by the solution and mixed hydroxide methods, characterised by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and studied by cyclic voltammetry (CV) and charge discharge cycling in CC and CCCV modes at room temperature (r.t.) and at 50 °C. The XPS studies show about 8% of Ni3+ and Mn3+ ions are present in Li(Ni2+1/2Mn1/24+)O2 due to valency-degeneracy. The compound prepared at 950 °C, 12 h, solution method gives a second cycle discharge capacity of 150 mA h g−1 (2.5-4.4 V) at a specific current of 30 mA g−1 and retains 137 mA h g−1 at the end of 40 cycles. CV shows that the redox process at 3.7-4.0 V corresponds to Ni2+↔Ni4+ and clear indication of Mn3+/4+ couple was noted at 4.2-4.5 V. The observed capacity-fading (2.5-4.4 V) is shown to be contributed by the polarisation at the end of charging. The cathodic capacity is stable up to 40 cycles in the voltage window, 2.5-4.2 V both at room temperature and 50 °C.  相似文献   

20.
LiNi1/3Co1/3Mn1/3O2 cathode materials have been coated with Al2O3 nano-particles using sol-gel processing to improve its electrochemical properties. The X-ray diffraction (XRD) pattern of the as-prepared Al2O3 nano-particles was indexed to the cubic structure of the γ-Al2O3 phase and had an average size of ∼4 nm. The XRD showed that the structure of LiNi1/3Co1/3Mn1/3O2 was not affected by the Al2O3 coating. However, the Al2O3 coatings on LiNi1/3Co1/3Mn1/3O2 improved the cyclic life performance and rate capability without decreasing its initial discharge capacity. These electrochemical properties were also compared with those of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material. The electrochemical impedance spectroscopy (EIS) was studied to understand the enhanced electrochemical properties of the Al2O3-coated LiNi1/3Co1/3Mn1/3O2 compared to uncoated LiNi1/3Co1/3Mn1/3O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号