首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ankur Gigras  A.V. Anil Kumar 《Carbon》2007,45(5):1043-1050
The idea that increasing the enthalpy of adsorption increases the adsorptive capacity of carbon and makes it a better storage material for hydrogen is examined here considering the entire adsorption-desorption cycle. Structural modifications of carbon are examined to reveal the complex relationships between the enthalpy of adsorption, the pore volume, and the amount of hydrogen delivered over the course of a single cycle. The results provide an understanding of the connection between enthalpy and effective storage capacity in carbon materials and serve as a guide toward the search for an adsorbent which satisfies the DOE targets. Extensive GCMC simulations show that carbons having single graphene walls are optimal for hydrogen storage and that attempts to increase the enthalpy of adsorption either by increasing the wall thickness or by decreasing the pore size are detrimental to adsorptive capacity over a complete cycle from charging to exhaustion. It is found that carbon nanotubes display the same trend as slit pore carbons. The search for an adsorbent suitable for hydrogen storage should be aimed at the discovery of an entirely new high-capacity adsorbent with an enthalpy of adsorption of 15 kJ/mol, intermediate between that of carbon (4-6 kJ/mol) and metal hydrides (30-75 kJ/mol).  相似文献   

2.
Nano-crytalline hydrotalcite derived reduced mixed oxides containing magnesium, nickel and aluminium (MNAM) have been synthesized using coprecipitation and showed successfully nickel catalysed reversible hydrogen adsorption using the temperature programmed technique under near ambient conditions. ICP-MS and XRD analysis ensured the adsorbent homogeneity and different crystalline phases of mixed oxides. Morphology and textural properties of mixed oxides have been explored using the FESEM, BET and HRTEM analysis techniques. Nano-crystalline and mesporous reduced mixed oxides exhibited a 3.9 wt% H2 adsorption capacity in where desorption capacity was 1.9 wt% H2. Hydrogen adsorbed surface and different phases were analysed by XPS, Raman and FTIR analysis techniques. The hydrogen adsorption enthalpy (ΔH) and entropy (ΔS) changes of reduced mixed oxides were −47.58 kJ/mol and −120.98 J/mol K, respectively, and the promising desorption activation energy of 65 kJ/mol correspond its reversibility as potential energy storage material.  相似文献   

3.
Hydrogen adsorption measurements have been carried out at different temperatures (298 K and 77 K) and high pressure on a series of chemically activated carbons with a wide range of porosities and also on other types of carbon materials, such as activated carbon fibers, carbon nanotubes and carbon nanofibers. This paper provides a useful interpretation of hydrogen adsorption data according to the porosity of the materials and to the adsorption conditions, using the fundamentals of adsorption. At 298 K, the hydrogen adsorption capacity depends on both the micropore volume and the micropore size distribution. Values of hydrogen adsorption capacities at 298 K of 1.2 wt.% and 2.7 wt.% have been obtained at 20 MPa and 50 MPa, respectively, for a chemically activated carbon. At 77 K, hydrogen adsorption depends on the surface area and the total micropore volume of the activated carbon. Hydrogen adsorption capacity of 5.6 wt.% at 4 MPa and 77 K have been reached by a chemically activated carbon. The total hydrogen storage on the best activated carbon at 298 K is 16.7 g H2/l and 37.2 g H2/l at 20 MPa and 50 MPa, respectively (which correspond to 3.2 wt.% and 6.8 wt.%, excluding the tank weight) and 38.8 g H2/l at 77 K and 4 MPa (8 wt.% excluding the tank weight).  相似文献   

4.
Graphene-like nanosheets have been synthesized by the reduction of a colloidal suspension of exfoliated graphite oxide. The morphology and structure of the graphene powder sample was studied using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The graphene sheets are found to be in a highly agglomerated state, with many wrinkles. The sample has a BET surface area of 640 m2/g as measured by nitrogen adsorption at 77 K. Hydrogen adsorption-desorption isotherms were measured in the temperature range 77-298 K and at pressures of up to 10 bar. This gives hydrogen adsorption capacities of about 1.2 wt.% and 0.1 wt.% at 77 K and 298 K, respectively. The isosteric heat of adsorption is in the range of 5.9-4 kJ/mol, indicating a favourable interaction between hydrogen and surface of the graphene sheets. The estimated room temperature H2 uptake capacity of 0.72 wt.% at 100 bar and the isosteric heat of adsorption of our sample are comparable to those of high surface area activated carbons, however significantly better than the recently reported values for graphene and a range of other carbon and nanoporous materials; single and multi walled carbon nanotubes, nanofibers, graphites and zeolites.  相似文献   

5.
We have measured Incoherent Inelastic Neutron Scattering (IINS) spectra of H2 physisorbed in high purity chemically activated carbon (AC) at different surface coverage and at temperatures near the triple point of bulk hydrogen. Our experimental results and DFT calculations show that at low surface coverage, due to the very low corrugation of the adsorption potential, and in the absence of H2-H2 lateral interactions, the adsorbed molecules are practically free to translate in the 2D plane parallel to the surface. Model calculations show that a complete mixing between the sub-states of the J = 1 manifold occurs on the free surface. The J = 0-to-1 rotational transition should split if the H2 molecule is adsorbed in a slit type pore. Rotational splitting of up to 13 meV is found in the narrowest pores of around 6 Å investigated. The calculated isosteric heat of adsorption for molecules adsorbed on the free surface, at different sites and molecule orientations, range between −39 and −42 meV/H2 at 77 K. In the optimum size slit pores, these numbers double up. Micropore volume of 0.34-0.45 ml/g carbon, and an upper limit of 4 wt% hydrogen storage is anticipated for the investigated material.  相似文献   

6.
Unburned carbon (UBC) present in fly ash has been shown to adsorb mercury. In this work mercury adsorption onto the surface of UBC particles was investigated by using both computational and experimental methods. The UBC surfaces were assumed to be similar to that of graphene (single-layer graphite). The theoretical predictions using the Hartree–Fock method found that the zigzag edge of the carbonaceous cluster (C25H9) used provides stronger forces to attract mercury compared to the armchair edge (C24H8), probably resulting in greater mercury removal from flue gases. The adsorption of mercury on the simulated UBC surface (C25H9) was found to be a chemical process, with the predicated adsorption energy of 288.632 kJ/mol at room temperature. Furthermore, as temperature increases the adsorption energy slightly raises. The experimental studies showed that decreasing the particle size of UBC particles resulted in higher mercury uptake. Increasing the bed length resulted in higher mercury uptakes. Particle size can affect the sorbent capacity, and in this study UBC particles with size ranging between 125 and 250 μm seem to be more effective for mercury adsorption.  相似文献   

7.
Hydrogen adsorption in different carbon nanostructures   总被引:1,自引:0,他引:1  
Hydrogen adsorption in different carbonaceous materials with optimized structure was investigated at room temperature and 77 K. Activated carbon, amorphous carbon nanotubes, SWCNTs and porous carbon samples all show the same adsorption properties. The fast kinetics and complete reversibility of the process indicate that the interaction between hydrogen molecules and the carbon nanostructure is due to physisorption. At 77 K the adsorption isotherm of all samples can be explained with the Langmuir model, while at room temperature the storage capacity is a linear function of the pressure. The surface area and pore size of the carbon materials were characterized by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. A linear relation between hydrogen uptake and specific surface area (SSA) is obtained for all samples independent of the nature of the carbon material. The best material with a SSA of 2560 m2/g shows a storage capacity of 4.5 wt% at 77 K.  相似文献   

8.
The objective of this study is to relate textural and surface characteristics of microporous activated carbon to their methane adsorption capacity. Oil palm shell was used as a raw material for the preparation of pore size controlled activated carbon adsorbents. The chemical treatment was followed by further physical activation with CO2. Samples were treated with CO2 flow at 850 °C by varying activation time to achieve different burn-off activated carbon. H3PO4 chemically activated samples under CO2 blanket showed higher activation rates, surface area and micropore volume compared to other activation methods, though this sample did not present high methane adsorption. Moreover, it was shown that using small proportion of ZnCl2 and H3PO4 creates an initial narrow microporosity. Further physical activation grantees better development of pore structure. In terms of pore size distribution the combined preparation method resulted in a better and more homogenous pore size distribution than the conventional physical activation method. Controlling the pore size of activated carbon by this combined activation technique can be utilized for tuning the pore size distribution. It was concluded that the high surface area and micropore volume of activated carbons do not unequivocally determine methane capacities.  相似文献   

9.
Youmi Jeong 《Carbon》2010,48(9):2526-5094
A new family of porous boron-substituted carbon (BCx) materials with controlled structure is investigated. The chemistry involves a B-precursor polymer, i.e., poly(borachlorophenyldiacetylene), containing inorganic additives (templates). At pyrolysis <400 °C, the B-precursor engages in easy inter-chain reactions to form dark solid with high yield (>85%). Above 600 °C, the amorphous carbon-like BCx materials containing up to 12% B have been prepared, which show an extended fused hexagonal ring structure with B-puckered curvature. This out of planar B moiety maintains its electron deficiency, due to limited π-electron delocalization, and exhibits super-activated properties to enhance H2 binding energy (20-10 kJ/mol) and adsorption capacity. After removing the inorganic additives by water-washing, the resulting porous BCx shows a surface area 500-800 m2/g. Evidently, the pore size distribution is directly related to melting temperature and distribution of the inorganic salts. As the temperature increases to >1400 °C, the distorted ring structure gradually flatten out to form a multi-layer (crystalline) BCx structure. The resulting planar graphitic layer only can accommodate a reduced B content (<3% at 1800 °C) and low surface area. The B moieties also lose their acidity due to the extensive π-electron delocalization.  相似文献   

10.
Activated carbon xerogels, with selected characteristics, were doped with Ni, using different methods, and tested for hydrogen storage. The results obtained show that the amount of nickel incorporated, the Ni-carbon interaction and the nickel particle size distribution depend more on the doping method used than on the textural properties of the carbon support. The amount of nickel incorporated by strong electrostatic adsorption is lower than that incorporated by dry impregnation. However, the strong electrostatic adsorption method produces Ni-doped carbon xerogels with a high Ni-carbon interaction and a narrower Ni particle size distribution. The influence of Ni on H2 storage capacity depends on the operating conditions and the doping conditions used. Thus, at −196 °C and 40 bar, storage capacity seems to be mainly influenced by the textural properties of carbon support while, at 25 °C and 200 bar, the spillover effect plays a significant role, being the interaction between the support and Ni particles key factor in the storage process. The best Ni-doped carbon xerogels obtained in this work exhibit hydrogen storage capacities of 6 wt.% and 31.8 g l−1 at −196 °C and 40 bar.  相似文献   

11.
Chao-Yin Kuo 《Desalination》2009,249(3):976-982
This study utilized carbon nanotubes (CNTs) to remove bisphenol A (BPA) from aqueous solution. The surfaces of CNTs were modified by SOCl2/NH4OH under microwave irradiation. The surface characteristics of as-grown and modified CNTs were analyzed by measuring zeta potential, and using a scanning electron microscope, a surface area analyzer and a Fourier transform infrared spectroscope. The specific surface area of modified CNTs exceeded that of as-grown CNTs. The pHiep values of as-grown CNTs and modified CNTs were determined to be 4.3 and 6.5, respectively. Some amine functionalities were formed on the surface of modified CNTs; therefore, the surface of the modified CNTs contained more positive charges than that of the as-grown CNTs. The adsorption kinetics were examined using pseudo first- and second-order models, intraparticle diffusion and Bangham's models. The equilibrium data were simulated using Langmuir, Freundlich, Dubinin and Radushkevich (D-R) and Temkin isotherms. The results reveal that the pseudo second-order model and Langmuir isotherm fit the kinetics and equilibrium data, respectively. The adsorption capacity of BPA on the surface of CNTs fluctuates very little with pH in the range of 3-9, suggesting the high stability of CNTs as an adsorbent for BPA over a rather wide pH range. The values of ΔH0 and ΔS0 were calculated to be − 11.7 kJ/mol and 46.1 J/mol, respectively. The isotherm and thermodynamic simulations indicate that the adsorption of BPA onto as-grown CNTs proceeds by physisorption process.  相似文献   

12.
Hydrogen adsorption on ultramicroporous carbon was investigated at near-ambient temperatures using volumetric and gravimetric methods. The results showed that the main process, physisorption, is accompanied by a slow process of different nature, that causes slow uptake at high pressures and hysteresis on desorption. The combined result is unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt.% at 25 °C and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17-20 kJ/mol) is higher than usually reported for carbon materials; the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption induced by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.  相似文献   

13.
Dapeng Cao 《Carbon》2005,43(7):1364-1370
Grand canonical Monte Carlo simulations (GCMC) are carried out to investigate the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons are represented by a slit-pore model. At elevated temperatures (T = 505 and 923 K), the activated carbons exhibit essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls monotonically as the pore size increases. At room temperature, however, the selectivity of carbon dioxide relative to hydrogen reaches up to 90, indicating that hydrogen and carbon dioxide can be efficiently separated. Furthermore, the optimized pore sizes, of width H = 1.48 nm for the bulk mole fraction ratio of xCO2/xH2=1:2 and H = 1.18 nm for xCO2/xH2=1:8, are identified in which the activated carbons show the highest selectivity for the separation of hydrogen and carbon dioxide.  相似文献   

14.
A novel hybrid material silica gel chemically modified by diethylenetriaminemethylenephosphonic acid GH-D-P has been developed and characterized. The results of the adsorption thermodynamics and kinetics of the as-synthesized GH-D-P for Au(III) showed that this high efficient inorganic–organic hybrid adsorbent had good adsorption capacity for Au(III), and the best interpretation for the experimental data was given by the Langmuir isotherm equation, the maximum adsorption capacity for Au(III) is 357.14 mg/g at 35 °C. Moreover, the study indicated the adsorption kinetics of GH-D-P could be modeled by the pseudo-second-order rate equation wonderfully, and the adsorption thermodynamic parameters ΔG, ΔH and ΔS were −20.43 kJ mol−1, 9.17 kJ mol−1, and 96.24 J K−1 mol−1, respectively. Therefore, the high adsorption capacity make this hybrid material have significant potential for Au(III) uptake from aqueous solutions using adsorption method.  相似文献   

15.
Dipendu Saha 《Carbon》2010,48(12):3471-6786
C60 buckyball molecules were partially truncated by a controlled oxidation at 400 °C and 2 bar oxygen pressure to create unique pore textures suitable for hydrogen adsorption. Pore textural analysis and density measurement confirmed the success of cage-opening and the creation of pore structures accessible to gas molecules. The specific surface area of the C60 sample were increased from below detection to a measurable value (BET: 85 m2/g). Raman spectral study showed that the three main bands of C60, Hg(1), Ag(1) and Ag(2) remained and significant defects were created after the C60 fullerenes were partially oxidized. XRD and SEM measurements suggested that the C60 fullerenes lost their crystallinity and the crystal surfaces were etched after the oxidation step. Hydrogen adsorption on the C60 fullerenes were measured at three temperatures (77, 143 and 228 K) and hydrogen pressures up to 150 bar. Hydrogen adsorption capacity on C60 fullerenes at 77 K at 120 bar was more than tripled (from 3.9 to 13 wt.%) after the C60 fullerenes were partially oxidized. The average heat of adsorption of hydrogen on the partially oxidized C60 fullerene molecules (2.38 kJ/mol) is within the range of the reported values of heat of adsorption on other porous adsorbents.  相似文献   

16.
Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers   总被引:2,自引:0,他引:2  
Fluorinated activated carbon fibers (F-ACFs) were prepared by direct thermal fluorination of pristine activated carbon fibers. By the pyrolysis of F-ACFs at 1073 K under nitrogen gas flow, fluorine was subsequently eliminated and the sp2-bonded ACF structures were recovered. The micropore widths were 1.1 and 0.8 nm, and the isosteric heats of adsorption of nitrogen were 11.3 and 12.8 kJ/mol for pristine and defluorinated ACFs, respectively. These results strongly suggest that changes occurred in the structural properties of micropores in defluorinated ACFs. The hydrogen adsorption isotherms showed that the defluorinated ACFs adsorbed more hydrogen gas than pristine ACFs at 77 K, suggesting that the potential for interaction between hydrogen molecules and the defluorinated slit nanospaces was increased due to the changes in the pore structural properties and/or to the induced polarization of the pore walls making up the modified π-electron systems.  相似文献   

17.
In this study, carbonaceous materials such as activated carbon and activated carbon aerogel were chemically modified with a surfactant sodium oleate in order to improve their specific capacitance and energy storage in electrochemical double-layer capacitors (EDLCs). Optimal conditions for surface modification of activated carbon have been examined as a surfactant solution concentration of 0.25 wt.% together with a time of 24 h for treatment at 25 °C. Specific capacitance and energy density can be improved significantly by surface modification of carbon materials. The enhancement in specific capacitance and energy density is mainly attributable to improvement in wettability of carbon materials, which results in a higher usable surface area and a smaller internal resistance. The effects from surface modification become more marked at higher discharge rates, at which the internal resistance has a more important impact on the energy delivery. A two times energy density of the original carbon could be achieved for the modified carbon materials at a high discharge rate, which indicates that the modified carbons are more suitable in EDLCs for high current applications. In addition, the modified carbon materials possess excellent cycle stability (the capacity decay was only 4% after 20,000 cycles).  相似文献   

18.
Yahia A. Alhamed 《Fuel》2009,88(1):87-14104
Samples of granular activated carbon (GAC) were produced from dates’ stones by chemical activation using ZnCl2 as an activator. Textural characteristics of GAC were determined by nitrogen adsorption at 77 K along with application of BET equation (Brunauer, Emmett and Teller) for determination of surface area. Pore size distribution and pore volumes were computed from N2 adsorption data by applying the nonlinear density function theory (NLDFT). FT-IR spectra of GAC samples were also obtained to determine the functional groups present on the surface. GAC samples were used in desulfurization of a model diesel fuel composed of n-C10H34 and dibenzothiophene (DBT) as sulfur containing compound. More than 86% of DBT is adsorbed in the first 3 h which gradually increases to 92.6% in 48 h and no more sulfur is removed thereafter. The adsorption data were fitted to both Freundlich and Langmuir equations to estimate the adsorption parameters. The optimum operating conditions for GAC preparation based on high adsorption capacity are Tcarb = 700 °C, θcarb = 3.0 h and R = 0.5. Moreover, the efficiency of sulfur removal by GAC is reduced when applied to commercial diesel fuel. Finally, linear regression of experimental data was able to predict the critical pore diameter for DBT adsorption (0.8 nm) and validating the reported impact of average pore diameter of activated carbon on the adsorption capacity.  相似文献   

19.
Chao-Yin Kuo 《Desalination》2009,249(2):781-785
This study compares aqueous copper (II) adsorbed onto as-grown and modified carbon nanotubes (CNTs), using H2SO4 and H2SO4/KMnO4 processes. H2SO4 and H2SO4/KMnO4 modifications reduced pHiep and Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that some functional groups were formed on modified CNTs. The adsorption capacity of copper (II) onto modified CNTs was greater than that of as-grown CNTs, especially at pH 6. The results demonstrate that the modified processes increased the adsorption capacity because the functional groups were generated on the modified surfaces of the CNTs. Additionally, the adsorption capacity of copper (II) onto as-grown and modified CNTs both increased with temperature, and the results indicated that the Langmuir isotherm fitted the experimental data well. Simulation results indicated that the ΔH0 values of as-grown, H2SO4-modified CNTs and H2SO4/KMnO4-modified CNTs were 4.83, 14.37 and 29.92 kJ/mol, respectively. Based on ΔH0, the adsorption of Cu2+ onto H2SO4/KMnO4-modified CNTs is suggested to proceed simultaneously by physisorption and chemisorption but that onto as-grown and H2SO4-modified CNTs may proceed only by physisorption.  相似文献   

20.
Two coal chars were gasified with carbon dioxide or steam using a Pressurized Drop Tube Furnace (PDTF) at high temperature and pressurized conditions to simulate the inside of an air-blown two-stage entrained flow coal gasifier. Chars were produced by rapid pyrolysis of pulverized coals using a DTF in a nitrogen gas flow at 1400°C. Gasification temperatures were from 1100 to 1500°C and pressures were from 0.2 to 2 MPa. As a result, the surface area of the gasified char increased rapidly with the progress of gasification up to about six times the size of initial surface area and peaked at about 40% of char gasification. These changes of surface area and reaction rate could be described with a random pore model and a gasification reaction rate equation was derived. Reaction order was 0.73 for gasification of the coal char with carbon dioxide and 0.86 for that with steam. Activation energy was 163 kJ/mol for gasification with carbon dioxide and 214 kJ/mol for that with steam. At high temperature as the reaction rate with carbon dioxide is about 0.03 s−1, the reaction rate of the coal char was controlled by pore diffusion, while that of another coal char was controlled by surface reaction where reaction order was 0.49 and activation energy was 261 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号