首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertically aligned carbon nanotubes (CNTs) were synthesized from Ni nanoparticles prepared by ion implantation. Ni ions were implanted at 30 keV into thermally grown SiO2 substrates using a focused-ion-beam. High-density nanoparticle formation was investigated with high doses up to 5.0 × 1017 ions/cm2. Dense Ni nanoparticles in the order of 1011–1012 cm− 2 were obtained on a SiO2 substrate, and the particle density and diameter were controlled by post-implantation annealing. Particles annealed at 700 °C led to vertically aligned CNTs. Interestingly, catalysts were longer along the vertical axis and the lower half of the Ni particle was buried in SiO2.  相似文献   

2.
One of the outstanding questions about synthesis of single-walled carbon nanotubes is what is the role and mechanism of carbon diffusion during chemical vapor deposition synthesis. Examination of individual trajectories of all carbon atoms in reactive molecular dynamics simulated growth of single-walled carbon nanotubes on supported nanoparticles identifies carbon atoms involved in surface diffusion, bulk diffusion, and potential carbide formation. We show that transitions between induction, nucleation, and growth are denoted by saturation of the nanoparticle and by changes in the catalytic regime. It is found that nucleation and dissolution may occur simultaneously, with pre-saturation nucleation driven by the low-energy barrier for surface diffusion. It is concluded that for carbon-philic catalysts, induction and nucleation periods are usually governed by bulk diffusion, while the growth period is dominated by surface diffusion. Surface diffusion control during growth is in agreement with successful nanotube growth on metals such as copper and gold, which do not dissolve carbon. In the range studied, C solubility decreases with particle size, and the Ni/C ratios found coincide with stoichiometries of known Ni carbides.  相似文献   

3.
Since their discovery in the early 1990s, single-walled carbon nanotubes (SWNTs) have spawned previously unimaginable commercial and industrial technologies. Their versatility stems from their unique electronic, physical/chemical, and mechanical properties, which set them apart from traditional materials. Many researchers have investigated SWNT growth mechanisms in the years since their discovery. The most prevalent of these is the vapor-liquid-solid (VLS) mechanism, which is based on experimental observations. Within the VLS mechanism, researchers assume that the formation of a SWNT starts with co-condensation of carbon and metal atoms from vapor to form liquid metal carbide. Once the liquid reaches supersaturation, the solid phase nanotubes begin to grow. The growth process is partitioned into three distinct stages: nucleation of a carbon "cap-precursor," "cap-to-tube" transformation, and continued SWNT growth. In recent years, molecular dynamics (MD) simulations have come to the fore with respect to SWNT growth. MD simulations lead to spatial and temporal resolutions of these processes that are superior to those possible using current experimental techniques, and so provide valuable information regarding the growth process that researchers cannot obtain experimentally. In this Account, we review our own recent efforts to simulate SWNT nucleation, growth, and healing phenomena on transition-metal catalysts using quantum mechanical molecular dynamics (QM/MD) methods. In particular, we have validated each stage of the SWNT condensation mechanism using a self-consistent-charge density-functional tight-binding (SCC-DFTB) methodology. With respect to the nucleation of a SWNT cap-precursor (stage 1), we have shown that the presence of a transition-metal carbide particle is not a necessary prerequisite for SWNT nucleation, contrary to conventional experimental presumptions. The formation and coalescence of polyyne chains on the metal surface occur first, followed by the formation of the SWNT cap-precursor, "ring condensation", and the creation of an sp(2)-hybridized carbon structure. In our simulations, the nucleation process takes approximately 400 ps. This first step occurs over a much longer time scale than the second stage of SWNT condensation (approximately 50 ps). We therefore observe SWNT nucleation to be akin to the rate-limiting step of the SWNT formation process. In addition to the QM/MD simulation of various stages of SWNT nucleation, growth, and healing processes, we have determined the effects of temperature, catalyst composition, and catalyst size on the kinetics and mechanism of SWNT growth. With respect to temperature dependence, we observe a "sweet-spot" with respect to the efficiency of SWNT growth. In addition, Ni-catalyzed SWNT growth is observed to be 70-100% faster compared to Fe-catalyzed SWNT growth, depending on the catalyst particle size. We also observe a noticeable increase in SWNT growth rates using smaller catalyst particles. Finally, we review our recent QM/MD investigation of SWNT healing. In particular, we recount mechanisms by which adatom defects, monovacancy defects, and a "5-7 defect" are removed from a nascent SWNT. The effectiveness of these healing mechanisms depends on the rate at which carbon moieties are incorporated into the growing SWNT. Explicitly, we observe that healing is promoted using a slower carbon supply rate. From this rudimentary control of SWNT healing, we propose a route towards chirality-controlled SWNT growth.  相似文献   

4.
Charlotte T.M. Kwok 《Carbon》2010,48(4):1279-10570
The temperature and time dependence of single-walled carbon nanotube (SWCNT) growth by chemical vapor deposition of ethanol on Fe2O3/MgO catalyst are compared at both low (∼27 Pa) and atmospheric pressure limits. SWCNTs are synthesized in two reactors with different geometries and operating pressures and are characterized by Raman spectroscopy. Both reactors show SWCNT growth within a relatively narrow temperature window of 700-850 °C, with an optimum growth time of 35 min for the cold wall reactor and 75 min for the quartz tube reactor. A kinetic model comprising of ethanol decomposition, SWCNT formation, and water etching is developed to better understand the growth mechanism. The existence of a temperature window and an optimum growth time in both reactors can be well described by the kinetic model. Simulation results suggest that the temperature and time dependence can be explained by the competition between the growth of SWCNTs and that of amorphous carbon.  相似文献   

5.
Double-walled carbon nanotubes (DWCNTs) were selectively functionalised by treatment with concentrated nitric and sulphuric acid, resulting in carboxylated outer and pristine inner tube constituents. The functionalised DWCNTs were then incorporated into two types of pre-existing carbon nanotube (CNT) electrode platforms, and the performance of each was compared to single-walled carbon nanotubes (SWCNTs). To make the CNT electrode platforms DWCNTs were covalently bound to fluorinated tin oxide glass (FTO) or electrografted aminophenyl tether layers on silicon. The performance of single- compared to double-walled CNTs on FTO or silicon supported electrodes was then determined through electrochemical methods, using the redox probes, ferrocene and ruthenium hexaamine, respectively. The DWCNTs showed an improved heterogeneous rate constant. This improvement was attributed to the protection of the electronic properties of the inner wall of the DWCNT during the chemical modification and suggests that DWCNTs may offer a useful alternative to SWCNTs in future electronic devices.  相似文献   

6.
Single-walled carbon nanotube (SWCNT) was synthesized from short nanotubes using chemical vapor deposition (CVD) and the associated factors affecting the re-growth of the SWCNT were both investigated and optimized. Long, dense nanotubes were prepared from a mixture of acetylene and ethanol on air-annealed ST-cut quartz substrates by hot-wall CVD. Raman and photoluminescence analyses of the resulting material demonstrated that SWCNT was generated from the initial seeds since the chiralities of the seeds were maintained in the re-grown SWCNT. The re-growth of SWCNT was also achieved by cold-wall CVD. In both CVD systems, the efficiency of SWCNT re-growth was largely determined by the pretreatment conditions and growth parameters. By varying these factors, the growth of SWCNT from seeds was controlled. The re-growth mechanism is discussed based on experimental observations.  相似文献   

7.
Differential electrical mobility (DMA) method for the on-line detection of single-walled carbon nanotubes (SWCNTs) formation was used for the first time. Three different gas-phase synthesis processes were used to produce SWCNTs via CO disproportionation in the presence of catalyst nanoparticles formed either by a hot wire generator method or via thermal decomposition of ferrocene or iron pentacarbonyl. The typical product measured with the DMA method was bundles of SWCNTs, which further agglomerated prior to the measurement. Despite the different product morphology and concentration, the on-line measurement was able to distinguish SWCNT formation in each experimental set-up as an increase in the geometric mean particle diameter and as a decrease in the total particle number concentration. Furthermore, information regarding the relative SWCNT concentration can also be obtained from the DMA measurement. A theoretical approach to the mobility of nonspherical particles in the electric field was successfully developed in order to convert the electrical mobility size of the high aspect ratio SWCNTs measured with DMA to the physical size of the product. Size-selected SWCNTs were studied with transmission electron microscopy in order to find the correlation between the on-line DMA measurement data and the SWCNT morphology.  相似文献   

8.
Chemical vapor deposition growth of single-walled carbon nanotubes (SWCNTs) was studied using three representative carbon source sources: CO, ethanol, and methane, and a catalyst of Ni ions incorporated in MCM-41. The resulting SWCNTs were compared for similar reaction conditions. Carbon deposits were analyzed by multi-excitation wavelength Raman, TGA, TEM and AFM. Catalytic particles in the Ni-MCM-41 catalysts were characterized by TEM and synchrotron light source X-ray absorption spectroscopy. Under similar synthesis conditions, SWCNTs produced from CO had a relatively smaller diameter, while those from ethanol had a larger diameter. Methane could not produce SWCNTs on Ni-MCM-41 under the conditions used in this research. These results demonstrate that three carbon sources affect the dynamic balances between metallic cluster formation and carbon deposition/precipitation on the metallic cluster surface. Controlling SWCNT diameter relies on precisely regulating this dynamic process. Using different carbon sources we are able to shift this dynamic balance and produce SWCNTs with different mean diameters.  相似文献   

9.
Random network single-walled carbon nanotube (SWNT)-based thin film transistors show excellent properties in sensors, electronic circuits, and flexible devices. However, they exhibit a significant amount of hysteresis behavior, which should be solved prior to use in industrial applications. This paper provides optimum conditions for the growth of random network SWNTs and reveals that the observed hysteresis behavior originates from the charge exchange between the SWNTs and the dielectric layer rather than from changes in the intrinsic properties of the SWNTs. This was proven by studying the conditions of stepwise gate sweep experiments and time measurements. This paper also shows that top gate SWNT thin film transistors (TFTs) with an SU-8 dielectric layer could provide a practical solution to the hysteresis problem for SWNT TFTs in electronic circuit applications.  相似文献   

10.
11.
A family of layered double hydroxides (LDHs) with varied Fe contents were employed as catalyst precursors for the controllable bulk growth of few-layer graphene/single-walled carbon nanotube (G/SWCNT) hybrids in a fluidized-bed reactor through chemical vapor deposition of methane at 950 °C. All the G/SWCNT hybrids exhibited the morphology of SWCNTs interlinked with graphene layers. The purity, thermal stability, graphitization degree, specific surface area, and total pore volume of the G/SWCNT hybrids decreased with the increasing Fe contents in the LDH precursors. A high yield of 0.97 gG/SWCNTs/gcat can be achieved by tuning the Fe content in the FeMgAl LDHs after a 15-min growth. After the removal of the as-calcined FeMgAl layered double oxide flakes, a high carbon purity of ca. 98.3% for G/SWCNT hybrids was achieved when the mole ratio of Fe–Al is 0.05:1. The size and density of Fe nanoparticles decorated in the as-obtained G/SWCNT hybrids depend largely on Fe content in the FeMgAl LDH precursors. Furthermore, the mass ratio of graphene materials to SWCNTs in the as-prepared G/SWCNT hybrids can be well controlled in a range of 0.4–15.1.  相似文献   

12.
Yabin Chen  Jin Zhang 《Carbon》2011,(10):3316-3324
A rational approach is reported for the growth of single-walled carbon nanotubes (SWCNTs) with controlled diameters using SiO2 nanoparticles in a chemical vapor deposition system. The SiO2 nanoparticles with different sizes were prepared by thermal oxidation of 3-aminopropyltriethoxysilane (APTES) with different number of layers which were assembled on Si substrates. It was found that the size of SiO2 nanoparticles increased with the number of assembled APTES layers. Using these SiO2 nanoparticles as nucleation centers, the diameter distribution of as-grown SWCNTs were correlated with the size of SiO2 particles. In addition, both the classical longitudinal optical or transverse optical bands of SiC in in situ Raman spectra during the whole growth process and the Si 2p peak of SiC in the X-ray photoelectron spectra were not observed, suggesting that the carbon sources did not react with the SiO2 nanoparticles during the growth. Comparing to vapor–liquid–solid mechanism for metallic catalysts, vapor–solid mechanism is proposed which results in a lower growth rate when using SiO2 nanoparticles as nucleation centers.  相似文献   

13.
Shih-Hao Tseng 《Carbon》2010,48(8):2159-7011
A two-step method for the purification of single-walled carbon nanotube (SWCNT) rope containing substantial catalyst particles embedded in carbonaceous shells was developed. The first step was the triggering of rope ignition using a 9-V battery, which resulted in pre-oxidization of the carbon shells on the Fe3C catalyst and oxidation of the exposed Fe3C to form Fe2O3. In addition, SWCNTs with open-end structures due to ignition-induced cutting remained. In the second step, both oxalic acid (H2C2O4) and hydrochloric acid (HCl) were used as the reactants to remove the Fe2O3 particles. No damage on the SWCNT walls after H2C2O4 or HCl purification was found. In addition, adsorption of H2C2O4 was also found on the H2C2O4 purified SWCNT rope and it can be effectively removed by heating the rope at 200 °C in vacuum for 40 min. Samples were characterized by SEM, TEM, Raman spectroscopy, TGA, FTIR, XPS, and UV-Vis-NIR.  相似文献   

14.
Pressure-induced transition (5−100 kPa) of carbon nanotube (CNT) morphology in plasma enhanced chemical vapor deposition (PECVD) is presented. High-purity, vertically-aligned single-walled CNTs (SWCNTs) were synthesized only when PECVD was used at atmospheric pressure, while multi-walled CNTs were preferentially synthesized when the total pressure was lower than 20 kPa. In the reduced pressure range, nanostructured catalysts were easily coagulated at the initial stage of CNT nucleation even if an excess supply of reactive species and high-energy ion bombardment were absent. If catalyst coagulation was avoided at the moment of CNT nucleation, SWCNTs were grown in the root growth regime even at 5 kPa; however, the top CNT layer was severely contaminated by amorphous carbon, produced as a result of excess supply of reactive species.  相似文献   

15.
Robert J. Andrews 《Carbon》2006,44(2):341-347
Single walled nanotubes have been synthesized by chemical vapor deposition from camphor, camphor analogs (camphorquinone, norcamphor, norbornane, camphene, fenchone), and various other precursors (menthone, 2-decanone, benzene, methane). The high temperature conditions (865 °C) and Fe/Mo alumina catalyst used in the syntheses are archetypal conditions for the production of single walled carbon nanotubes. It has been shown that the mechanism of tube growth is unlikely to depend upon the production of reactive five- and six-member rings, as has been previously suggested. The results suggest that the presence of oxygen in the precursor does not significantly improve the quality of tubes by etching amorphous carbon: it is suggested that the control of the flux of the precursor to the catalyst is more important in the production of high quality tubes. There is, however, evidence for different distributions of tube diameter being produced from different precursors.  相似文献   

16.
Wu B  Geng D  Liu Y 《Nanoscale》2011,3(5):2074-2085
The nature of the mixed electronic type metallic (M-) and semiconducting (S-) single-walled carbon nanotubes (SWNTs) synthesized by current methods has posed a key challenge for the development of high performance SWNT-based electronic devices. The precise measurements of M- to S-SWNT ratio in as-grown or separated samples are of paramount importance for the controlled synthesis, separation and the realization of various applications. The objective of this review is to provide comprehensive overview of the progress achieved so far for measuring the M/S ratio both on individual and collective levels of SWNT states. We begin with a brief introduction of SWNT structures/properties and discussion of the problems and difficulties associated with precise measurement of the M/S ratio, and then introduce the principles for obtaining distinguished signals from M-and S-SWNTs. These techniques are classified into different groups based either on the single/ensemble detection of SWNT samples or on the principles of techniques themselves. We then present the M/S ratio evaluation results of these methods, with emphasis on scanning probe microscopy (SPM)-based detection techniques. Finally, the prospects of precise and large-scale measurement of M/S ratio in achieving controlled synthesis and understanding growth mechanism of SWNTs are discussed.  相似文献   

17.
A soot composed of radial single-walled carbon nanotubes (r-SWCNTs), in which 70 nm length nanotubes are grown radially around the core metal particles, and nanohorn-like carbons (NHCs) was used as reinforcement for a styrene-butadiene rubber (SBR). The fracture stress of r-SWCNT soot (38 phr)/SBR was 6.3 MPa at 60% strain. Furthermore, the hardness value of r-SWCNT soot (38 phr)/SBR was 94, which is 1.38 times larger, and larger than carbon black/SBR. Additionally, the resilience of r-SWCNT soot/SBR with 38 phr filler content was markedly lower than 20% in comparison with standard carbon black filler. These results indicate that r-SWCNT soot/SBR possesses excellent kinetic energy absorbing properties.  相似文献   

18.
Chen-Li Zhang 《Carbon》2007,45(13):2614-2620
Thermal buckling of initially compressed single-walled carbon nanotubes subjected to a uniform temperature rise is presented by using molecular dynamics simulations. Comprehensive numerical calculations are carried out for armchair and zigzag carbon nanotubes with various geometric dimensions. The results show that thermal buckling can occur beyond a critical value of temperature when the tube is initially compressed to a point prior to buckling. The critical buckling temperature increases as the compressive load ratio parameter decreases, and varies dramatically with nanotube helicity, radius and length. Owing to strong thermal oscillations of carbon atoms, a zigzag carbon nanotube with relatively small radius can buckle at a surprisingly lower temperature than the expected one.  相似文献   

19.
H.Q. Yu  J.X. Zhang  K.M. Liew 《Carbon》2010,48(2):417-8679
Molecular dynamics simulation is used to study the transport behavior of water molecules along an open-ended single-walled carbon nanotube (SWCNT) under the driving force of methane molecules. The methane molecules pull the water molecules from the inside of a SWCNT along the axial direction. The transport velocity of water molecules increases with increasing number of methane molecules, but decreases with increasing diameter of the SWCNT.  相似文献   

20.
Density-functional theory (DFT) calculations for idealized nucleation processes of (5, 5) and (10, 0) single-walled carbon nanotubes (SWCNTs) on a 55 atom nickel cluster (Ni55) showed that it requires a larger chemical potential to grow a carbon island (which is the simplest structure that can lead to formation of the SWCNTs) on the cluster than to extend the island into a SWCNT or to have the carbon atoms dispersed on the cluster surface. Hence, in the thermodynamic limit the island will only form once the (surface of the) cluster is saturated with carbon, and the island will spontaneously form a SWCNT at the chemical potentials required to create the island. The DFT (zero Kelvin) and tight binding Monte Carlo (1000 K) also show that there is a minimum cluster size required to support SWCNT growth, and that this cluster size can be used to control the diameter, but probably not the chirality, of the SWCNT at temperatures relevant to carbon nanotube growth. It also imposes a minimum size of clusters that are used for SWCNT regrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号