首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in syndiotactic polystyrene (sPS) is obtained by a simple solution dispersion procedure. MWCNTs were dispersed in N-methyl-2-pyrrolidinone (NMP), and sPS/MWCNT composites are prepared by mixing sPS/NMP solution with MWCNT/NMP dispersion. The composite structure is characterized by scanning electron microscopy and transmission electron microscopy. The effect of MWCNTs on sPS crystallization and the composite properties are studied. The presence of MWCNTs increases the sPS crystallization temperature, broadens the crystallite size distribution and favors the formation of the thermodynamically stable β phase, whereas it has little effect on the sPS γ to α phase transition during heating. By adding only 1.0 wt.% pristine MWCNTs, the increase in the onset degradation temperature of the composite can reach 20 °C. The electrical conductivity is increased from 10−10∼−16 (neat sPS) to 0.135 S m−1 (sPS/MWCNT composite with 3.0 wt.% MWCNT content). Our findings provide a simple and effective method for carbon nanotube dispersion in polymer matrix with dramatically increased electrical conductivity and thermal stability.  相似文献   

2.
High performance perfluoro alkoxy (PFA) and chemical vapor deposition-grown multi-walled carbon nanotube (MWCNT) composite films with thicknesses of 30 μm were prepared using a scalable spray deposition technique. A homogeneous distribution of MWCNTs within the PFA matrix was confirmed by electron and optical microscopy. Dielectric and AC conductivity measurements showed a significant enhancement of dielectric permittivity for PFA/MWCNT films at low frequencies, and a very weak dependence of dielectric permittivity on temperature in the range 25-230 °C. Very low percolation threshold volume fractions of ca. 0.0043 and 0.0017 were attained for MWCNTs with two different aspect ratios, which have been explained by an inherent feature of spray route, a microcapacitor model and percolation theory. The combination of PFA/MWCNT composites and the spray deposition route provides a promising approach for the fabrication of industrial scale composite films with well-controlled dielectric properties for micro-electronic and high temperature applications.  相似文献   

3.
Guang-Xin Chen 《Carbon》2007,45(12):2334-2340
Poly(vinylidene fluoride) (PVDF)/multiwalled carbon nanotube (MWCNT) composites were prepared using a novel ultrahigh-shear extruder by directly mixing MWCNT with PVDF in the molten state. A special feedback-type screw was used to obtain a high shear field and obtain a very uniform dispersion of the nanotubes in the polymer matrix under a higher screw rotation speed. Raman spectroscopy and scanning electron microscopy were used to determine the interaction and dispersion of nanotubes in the PVDF. The linear viscoelastic behavior and electrical conductivity of these composites were investigated. At low-frequencies, the storage shear modulus (G′) becomes almost independent of the frequency as nanotube loading increases, suggesting the onset of solid-like behavior in these composites. By plotting G′ vs. nanotube loading and fitting with a power-law function, we found that the rheological threshold of high-shear processed composites is about 0.96 wt% whereas that of low-shear processed composites is about 1.76 wt%. The electrical percolation threshold of high-shear processed composites is lower than that of low-shear processed composites.  相似文献   

4.
A well-dispersed multiwall carbon nanotube (MWCNT)/syndiotactic polystyrene (sPS) composite was prepared by simple in-situ polymerization of styrene using pentamethylcyclopentadienyltitanium(IV) trimethoxide (Cp*Ti(OMe)3) attached to the shortened and functionalized MWCNT (f-MWCNT). The attachment of Cp*Ti(OMe)3 to the f-MWCNT was confirmed by thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy, and energy dispersive X-ray spectroscopy. Cp*Ti(OMe)3 attached to pristine MWCNT in the presence of methylaluminoxane (MAO) did not produce PS, whereas Cp*Ti(OMe)3 attached to f-MWCNT showed a high catalytic activity for the syndiospecific polymerization of styrene under the same polymerization conditions. Obtained sPS showed a narrow molecular weight distribution (PDI ≈ 2), a high SI value (≥90%), and a high melting point (≈272 °C). Scanning electron microscopy and transmission electron microscopy images showed that MWCNT strands were well dispersed in the MWCNT/sPS composite. Such composites had greatly improved thermal stability compared to normal sPS polymers.  相似文献   

5.
Multi-walled carbon nanotube (MWCNT)/C/polystyrene (PS) composite materials were prepared by in situ polymerization of monomer in preformed MWCNT/C foams. MWCNT/C foams were preformed using polyurethane foam as template. The preformed MWCNT/C foams had a more continuous conductive structure than the carbon nanotube networks formed by free assembly in composites. The structure of the MWCNT/C foam network was characterized with scanning electron microscopy. The MWCNT/C/PS composites have an electric conductivity higher than 0.01 S/cm for a filler loading of 1 wt.%. Enhancement of thermal conductivity and mechanical properties by the preformed MWCNT/C foam were also observed.  相似文献   

6.
Graphene oxide (GO) was functionalized with hyperbranched polyurethane (HBPU) via click coupling between azide‐functionalized HBPU and alkynyl‐decorated GO. HBPU‐functionalized GO composites of various compositions were prepared. The azide‐containing HBPU was characterized using Fourier‐transform infrared (FT‐IR) spectroscopy and 1H‐nuclear magnetic resonance spectroscopy. The HBPU‐functionalized GO composites were characterized using transmission electron microscopy and FT‐IR spectroscopy. The functionalized GO showed excellent dispersion in the HBPU matrix, giving composites with enhanced mechanical and thermal properties. The material properties were effectively regulated by click‐coupled exfoliation of GO with HBPU, enabling the production of high‐performance materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44631.  相似文献   

7.
Silicon carbide particulate reinforced alumina matrix composites were fabricated using DIrected Metal OXidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with appropriate dopants along with a preform of silicon carbide has led to the formation of alumina matrix surrounding silicon carbide particulates. SiCp/Al2O3 ceramic matrix composites fabricated by the DIMOX process, possess enhanced mechanical properties such as flexural strength, fracture toughness and wear resistance, all at an affordable cost of fabrication. SiCp/Al2O3 matrix composites were investigated for mechanical properties such as flexural strength, fracture toughness and hardness; the composite specimens were evaluated using standard procedures recommended by the ASTM. The SiCp/Al2O3 ceramic matrix composites with SiC volume fractions from 0.35 to 0.43 were found to possess average bend strength in range 158-230 MPa and fracture toughness was found to be in range of 5.61-4.01 MPa√m. The specimen fractured under three-point loading as observed under scanning electron microscope was found to fail in brittle manner being the dominant mode. Further the composites were found to possess lower levels of porosity, among those prepared by DIMOX process.  相似文献   

8.
Novel fly ash cenosphere (FAC)/metakaolin (MK)-based geopolymeric composites were prepared by adding FAC to the MK-based geopolymeric slurry. Microstructure, mechanical property, thermal conductivity, and bulk density of the FAC/MK-based geopolymeric composites were investigated. It was confirmed by the scanning electron microscope (SEM) and transmission electron microscopy (TEM) that the FAC did not dissolve in alkaline condition, but element diffusion took place around the interface between geopolymeric matrix and FAC. The compressive strength, thermal conductivity and bulk density of FAC/MK-based geopolymeric composites decreased monotonically with the increase of the FAC content from 15 vol.% to 40 vol.%, and the minimum values for the 40 vol.% FAC/MK-based geopolymeric composite reached 36.5 MPa, 0.173 W m−1 K−1 and 0.82 g cm−3, respectively, in the range of FAC content from 15 vol.% to 40 vol.%. The results showed that the FAC could lower thermal conductivity effectively and bulk density of FAC/MK-based geopolymeric composites at a cost of slight decrease of mechanical properties. The 40 vol.% FAC/MK-based geopolymeric composite was a promising candidate material for intermediate-temperature thermal insulation applications due to its low thermal conductivity and low density.  相似文献   

9.
SnO2/multi-walled carbon nanotube (MWCNT) composites were prepared by the solvothermal method and subsequent heat treatment at 360 °C. The samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results on the higher SnO2 content composite sample indicate that a uniform layer of SnO2 nanocrystals with crystal size around 5 nm was deposited on the surface of the carbon nanotubes. The composite demonstrates a reversible lithium storage capacity of 709.9 mAh g−1 at the first cycle and excellent cyclic retention up to 100 cycles as anode for lithium ion batteries.  相似文献   

10.
Based on multi-wall carbon nanotubes (MWCNT)/chitosan/horseradish peroxidase labeled antibodies to Shigella flexneri (HRP-anti-S. flexneri) biocomposite film on a screen-printed electrode (SPE) surface, a disposable immunosensor has been developed for the rapid detection of S. flexneri. The HRP-anti-S. flexneri can be entrapped into MWCNT/chitosan composite matrix without other cross-linking agent. Thionine and H2O2 were used as the mediator and substrate, respectively. The surface morphologies of modified films were characterized by atomic force microscope (AFM). Cyclic voltammery (CV) was carried out to characterize the electrochemical properties of the immobilization of materials on the electrode surface and quantified S. flexneri. Due to the strong electrocatalytic properties of MWCNT and HRP toward H2O2, the response signal was significantly amplified. S. flexneri could be detected by the decrease of the reduction peak current before and after immunoreaction. Under optimal conditions, S. flexneri could be detected in the range of 104 to 1010 cfu mL−1, with a detection limit of 2.3 × 103 cfu mL−1 (S/N = 3). Furthermore, the proposed immunosensor exhibited a satisfactory specificity, reproducibility, stability and accuracy, indicating that the proposed immunosensor has potential application for a facile, rapid and harmless immunoassay.  相似文献   

11.
Nylon 6,6 composites containing nylon 6,6 grafted multi-walled carbon nanotubes (nylon 6,6-g-MWCNT) were fabricated from nylon 6,6 and acyl chloride grafted MWCNT (MWCNT–COCl) by reactive extrusion. MWCNT–COCl was produced by reacting acid-treated MWCNTs with thionyl chloride. Formation of nylon 6,6-g-MWCNT by reactive extrusion was confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and scanning electron microscopy. To quantify the interfacial adhesion energies of nylon 6,6 and pristine and functionalized MWCNTs, the contact angles of cylindrical drop-on-fiber systems were determined using the generalized droplet shape analysis. The interfacial adhesion energy of the nylon 6,6/nylon 6,6-g-MWCNT composite was twice that of the nylon 6,6/pristine MWCNT composite. Nylon 6,6-g-MWCNTs exhibited excellent dispersion in the composite, whereas pristine MWCNTs exhibited poor dispersion when composite films were prepared by solvent casting. The reinforcement level of the composite increased with increasing MWCNT content. Among the composites examined, the nylon 6,6/nylon-g-MWCNT composite with a fixed MWCNT content exhibited the highest level of reinforcement.  相似文献   

12.
This study demonstrates that mechanically robust antimicrobial nanocomposites of multiwalled carbon nanotubes (MWCNTs) and hyperbranched polyurethane (HBPU) can be prepared via a click chemistry reaction. Various compositions of HBPU-functionalized MWCNTs were synthesized from reactions of azide moiety-containing HBPU with alkyne-functionalized MWCNTs. The HBPU-functionalized MWCNTs were characterized morphologically using transmission electron microscopy and field emission scanning electron microscopy and chemically using Fourier transform infrared spectrometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. The functionalized MWCNTs exhibited excellent dispersion in the HBPU matrix, and as a result, superior mechanical and strong antibacterial properties were obtained. The antimicrobial properties were examined by use of gram-negative bacteria Escherichia coli (E. coli). Consequently the click coupled bonding of MWCNTs with HBPU was very efficient for regulating the composite properties and achieving high performance materials.  相似文献   

13.
Yang Liu 《Electrochimica acta》2008,53(8):3296-3304
Co3O4/RuO2·xH2O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO3)2·6H2O and RuCl3·0.5H2O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 °C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m2 g−1. The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 °C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM).  相似文献   

14.
A novel method based on spontaneous reduction of Ru(VI) and Ru(VII) is reported for the deposition of Ru oxide on multi-walled carbon nanotubes (MWCNT). Both purified and acid functionalized nanotubes (p-MWCNT and a-MWCNT) have been used to produce composite materials for use in high power aqueous supercapacitors. Specific capacitances of 213 ± 16 F g−1 and 184 ± 11 F g−1 were obtained for Ru oxide/p-MWCNT and Ru oxide/a-MWCNT composites, respectively. Specific capacitances for the Ru oxide component were 704 ± 62 F g−1 and 803 ± 72 F g−1, respectively. Current vs. potential curves exhibited capacitance peaks at ca. +0.5 V vs. Ag/AgCl. The Ru oxide/p-MWCNT composite was shown to be stable over 20,000 charge/discharge cycles. An advantage of the method is that no pre-treatment of the MWCNT is required for optimum performance.  相似文献   

15.
Electrical, morphological and rheological properties of polyethylene (PE)/multi-walled carbon nanotube (MWCNT) and poly(phenylene sulfide) (PPS)/MWCNT composites were studied with the MWCNT content using vector network analyzer, scanning electron microscopy and rotational rheometry. From the results of electrical conductivity and electromagnetic interference shielding efficiency (EMI SE) of the PE/MWCNT and PPS/MWCNT composites, the electrical percolation threshold of the composites has found to be 5 and 3 wt% MWCNT, respectively. From the results of the EMI SE of the composites, it was suggested that the increase in homogeneous dispersion of the MWCNT in the PPS matrix has been attributed to the increase in connectivity of the MWCNT-MWCNT network structure of the composite. Therefore, the higher values of the EMI SE with the MWCNT content were observed in the PPS/MWCNT than the PE/MWCNT composites. From the results of the rheological properties of the PE/MWCNT and PPS/MWCNT composites, the increase in the complex viscosity was observed for the PPS/MWCNT than the PE/MWCNT composites. The increase in complex viscosity maybe due to the increase in homogeneous dispersion of the MWCNT in the PPS matrix than that in the PE matrix. From the results of the rheological properties of the PE/MWCNT and PPS/MWCNT composites, it was suggested that the homogeneous dispersion of the MWCNT in the polymer matrix has affected the increase in complex viscosity of the PPS/MWCNT composite. This result of rheological behavior is consistent with the results of the EMI SE of the PE/MWCNT and PPS/MWCNT composites.  相似文献   

16.
Yuchang Qing  Wancheng Zhou  Fa Luo  Dongmei Zhu 《Carbon》2010,48(14):4074-4080
Microwave absorbing composites with epoxy-silicone as matrix and both multi-walled carbon nanotubes (MWCNTs) and carbonyl iron (CI) particles as absorbers were prepared, and their electromagnetic and microwave absorbing properties were investigated in the frequency range of 2-18 GHz. The microstructures of the composites show a uniform dispersion of the MWCNTs and CI particles in the matrix. The complex permittivity of the composites increased with increasing MWCNT content. A double resonance behavior of the complex permeability has been observed. One is due to the domain wall motion at about 7.5 GHz and the other is due to spin rotation at about 13.5 GHz. Reflection loss values exceeding −5 dB can be obtained in the frequency range of 10.4-18, 4.4-18 and 2-18 GHz, when the composite thickness is 0.5, 1 and 1.5 mm, respectively. A minimum reflection loss of −16.9 dB at 10.5 GHz and a bandwidth over the frequency range of 3.4-18 GHz with reflection loss below −10 dB can obtained for a composite filled with 0.5 vol% MWCNT and 50 vol% CI particles.  相似文献   

17.
Xiaofeng Xie 《Carbon》2007,45(12):2365-2373
An in situ coating technique was developed to prepare a manganese dioxide/multi-walled carbon nanotube (MnO2/MWCNT) composite, which exhibits excellent energy storage capacity. An alkaline KMnO4 solution was first used to oxidize and open the ends of pristine MWCNT, and citric acid was then added as a reductant to form the composite. TEM, HR-TEM, XRD, TG-DSC, FT-IR, Raman and XPS methods were used to characterize the structural features. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were used to investigate the electrochemical behavior of the samples. Results show that a nanosized ε-MnO2 uniform layer covered the surface of the MWCNT and the original structure of the pristine MWCNT was retained during the coating process. The cyclic voltammetry curves demonstrate that the specific capacitance of the composite electrode reaches 250.5 F/g, which is significantly higher than that of a pure MWCNT electrode. The favorable capacitance performance is confirmed by the impedance spectra.  相似文献   

18.
A composite anode material was prepared with confined tin into multiwall carbon nanotube by carbothermal reduction. The morphology and structure of Sn/C (nature graphite) and Sn/C-C (nature graphite + multiwall carbon nanotube) were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was revealed that the additive of MWCNT was a crucial factor to improve Sn /C composite anodes for cyclability and reversible capacity. Volume changes and morphological changes in Sn can be reduced by encasing MWCNT in a carbonaceous material that has sufficient flexibility to act as a buffer. Electrochemical performance test shows that the charge capacity of the Sn/C-C (NG + MWCNT) electrode in the fiftieth cycle was 400 mAh/g, which was higher than that of the Sn/C (NG) electrode. After 50 cycles, the retention of the Sn/C-C electrode and the Sn/C electrode was 80% and 63%, respectively.  相似文献   

19.
Polyethylene multiwalled carbon nanotube composites   总被引:4,自引:0,他引:4  
Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm−1 for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10−20 to 10−4 S/cm. The storage modulus (G′) versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical properties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (Tc) and fraction of PE that was crystalline (Fc) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT.  相似文献   

20.
Multi-wall carbon nanotubes-modified paraffin-impregnated graphite disk was fabricated by using choline bond and catalyzer (MWCNT/Ch/WGE), and the properties were, respectively, investigated by field emission scanning electron microscope (FE-SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical behavior of quercetin was studied in detail by FE-SEM, UV-spectroelectrochemical and various electrochemical methods, which related with the two catechol hydroxyl groups and the other three hydroxyl groups, the former is electron-donating group with a two electron two proton reversible reaction, and is pH dependent. A highly sensitive adsorptive stripping voltammetric measurement (AdSV) for quercetin was also shown at this electrode. On the optimum conditions, the adsorptive stripping response of the peak (E = 0.15 V, 3 min accumulation) was proportional to the concentration in a range of 9.0 × 10−9 to 4.0 × 10−5 M. A detection limit of 4.8 × 10−9 M was obtained with a signal-to-noise ratio (s/n) of 3 and a good precision (R.S.D.: 2.1%, n: 9). Such attractive ability of MWCNT/Ch/WGE suggests a great promise for a quercetin amperometric sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号