首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
P.W. Ruch  M. Hahn  A. Wokaun 《Carbon》2009,47(1):38-670
The electrochemical doping of single-walled carbon nanotubes (SWCNTs) in 1 M Et4NBF4 in acetonitrile was investigated by in situ Raman spectroscopy. The capacitance was determined to be 82 F/g for the positive and 71 F/g for the negative SWCNT electrode, respectively, which approaches the typical values for microporous activated carbons used in supercapacitors. The changes in the Raman intensities and shifts of the D and G+ bands as well as of the radial breathing modes (RBMs) during electron and hole injection were studied as a function of the electrode potential. For the D and G+ bands, hole doping leads to strong upshifts which can be attributed to a stiffening of C-C bonds and the corresponding phonon modes. Electron doping results in much less pronounced changes in the band positions. The intensity attenuation of the RBM bands was found to be markedly different for semi-conducting and metallic SWCNTs, whereby sufficiently high doping leads to a loss of Raman intensity due to bleaching of electronic transitions. The main RBM bands upshift upon both electron and hole doping, which is attributed to changes in the chemical environment of individual SWCNTs upon charging and discharging of the electrochemical double layer within SWCNT bundles.  相似文献   

2.
M. Baibarac  S. Lefrant 《Carbon》2009,47(5):1389-84
Electrochemical polymerization of 2,2′-bithiophene (BTh) on single-walled carbon nanotube (SWCNT) films has been studied by Raman scattering and infrared absorption spectroscopy. Covalent functionalization of SWCNTs with poly(bithiophene) (PBTh) in its un-doped and doped states is demonstrated. The occurrence of a charge transfer process at the interface of PBTh and SWCNTs, is shown by: (i) an up-shift of the Raman lines associated with the radial breathing modes of SWCNTs that reveals both a doping process and an additional twisting together as a rope with the conducting polymer as binding agent; (ii) a new Raman band in the range 1430-1450 cm−1 indicating the functionalization of SWCNTs with PBTh in doped and un-doped states; (iii) strong absorption bands situated in the interval 600-800 cm−1 resulting from steric hindrance produced by the nanotube binding to the polymeric chain. Treatment of the PBTh/SWCNT composite with aqueous NH4OH solution forms un-doped PBTh covalently functionalized SWCNTs. At the resonant excitation of the metallic tubes, an additionally enhanced Raman process is generated by plasmon excitation in the metallic nanotubes. It is evidenced by a particular behavior in the Stokes and anti-Stokes branch of the PBTh Raman line at 1450 cm−1.  相似文献   

3.
Raman spectra of SWNTs suspended in aqueous solutions containing fragmented single-stranded DNA (SWNT:DNA), and films obtained from this suspension have been obtained. SEM study of the dried films indicated that the nanotubes tend to aggregate into bundles which results in the enhancement of the Raman intensity of the G tangential band, and an upshift and broadening of the G+ band. The intensity of radial breathing modes of metallic SWNTs is higher in the SWNT:DNA films as compared to that of the SWNT:DNA solution. The Raman spectra of SWNT:PVP and SWNT:agaroza samples exhibit similar changes as the SWNT:DNA samples when films are cast from the corresponding solutions. Both films and the solution forms of SWNT:DNA yield luminescence spectra which indicates the presence of individual tubes or small bundles in the films. The luminescence bands of SWNT:DNA films are relatively wider and is attributed to the interaction of DNA with the nanotube surface in the solid state.  相似文献   

4.
The effects of two different halogen dopants (bromine and iodine) at different concentrations on the higher frequency modes (the so-called G and G′ bands) of the Raman spectra of double-wall carbon nanotube (DWCNT) “buckypaper” are investigated. The effects of dopants on different DWCNT configurations (metallic inner/semiconducting outer and vice versa) are studied by changing the laser excitation energy. The doping causes the loss of the Breit–Wigner–Fano line shape and the appearance of less metallic behavior. An increase of the relative intensity of the G+ band, which is more sensitive for the outer metallic tubes, is clearly observed with increasing Br2 concentration in the sample. By analysis of the G+ band and the G′ band it is possible to measure the changes in the electron–phonon coupling, due to the charge-transfer between the dopant (Br2 or I2) and the tubes in the DWCNT. The doping effect causes an upshift of the G+ band and a suppression of the contribution of the inner tubes to the G′ band signal and as a consequence, the observed G′ band is dominated by the contribution from the outer tubes.  相似文献   

5.
A. Tokura  F. Maeda  A. Yoshigoe  Y. Homma  Y. Kobayashi 《Carbon》2008,46(14):1903-1908
We have investigated the adsorption of atomic hydrogen on vertically aligned carbon nanotube (CNT) films using in situ synchrotron-radiation-based core-level (CL) photoelectron spectroscopy and Raman spectroscopy. From C 1s CL spectra, we identified a CL peak component due to C-H bonds of carbon atoms in single-walled carbon nanotubes (SWCNTs). We also found the suppression of π-plasmon excitation, indicating that the hydrogen adsorption deforms the bonding structure. Raman spectra of the SWCNT film indicated that the radial-breathing-mode intensities of SWCNTs decreased due to the adsorption-induced bonding-structure deformation. Moreover, the decrease for small-diameter SWCNTs was more severe than that for large-diameter SWCNTs. Our results strongly suggest that the hydrogen adsorption, which induces the structure deformation from sp2 to sp3-like bonding, depends on the diameter of SWCNTs.  相似文献   

6.
The Raman spectra of metallic tubes in SWCNTs (Single wall carbon nanotubes) bundles during electrochemical doping have been investigated using three different electrolyte solutions: LiClO4/CH3CN, LiClO4/propylenecarbonate/poly(methyl methacrylate) and LiClO4/polyethyleneimine. Precise control of the electrochemical charging enabled us to follow the detailed development of the tangential displacement (TG) mode of SWCNT bundles in dependence on the electrode potential. The response of the TG mode to electrode potential was dependent on electrolyte used as a consequence of different doping efficiency. We demonstrate that the liquid electrolyte solution (LiClO4/CH3CN) has superior doping efficiency to those of both the tested polymer electrolytes.  相似文献   

7.
The carbon source and growth conditions for single-walled carbon nanotube (SWCNT) growth in hot-wall chemical vapor deposition affect the chirality of the SWCNT ensemble produced. Raman spectroscopy elucidates the trends of the SWCNT semiconducting percentage grown under different conditions. Field-effect transistors using few SWCNTs per transistor were fabricated to allow for a semiconducting SWCNT enumeration and to confirm these trends. The semiconducting SWCNT percent in isopropanol-based devices peaked at 800 °C with 85% semiconducting. 2-Butanol-based and methane-based devices were 70% and 32% semiconducting, respectively.  相似文献   

8.
Armchair metallic single-walled carbon nanotubes (SWCNTs) retain their high symmetry under tensile stretching, and their electrical properties are the least sensitive to tensile strain. Other types of SWCNTs with lower symmetries, including quasi-metallic (or small band-gap semiconducting) and semiconducting SWCNTs, are more sensitive and can exhibit band-gap changes under tensile stretching. In this study, we demonstrate a simple and reliable method for selectively removing armchair metallic SWCNTs from suspended SWCNT arrays to tailor the strain property of these composite SWCNTs. Our method takes advantage of the band-gap changes of three SWCNT species with respect to strain. Proof of the effectiveness of selection is given by a comparative strain sensitivity study on the initial and treated SWCNT arrays.  相似文献   

9.
A feasible and scalable CO2-assisted arc discharge method was developed to directly synthesize single-walled carbon nanotubes (SWCNTs) with largely semiconducting species. Not only was electronic-type selectivity achieved on a large scale, with a semiconducting SWCNT (s-SWCNT) content of >90%, but also diameter selectivity was obtained, with a majority having diameters of >1.5 nm. The photo-catalytic water splitting performance of these SWCNTs with different ratios of s-SWCNTs to metallic single-walled carbon nanotubes (m-SWCNTs) was examined. The results show that, compared with m-SWCNTs, s-SWCNTs demonstrate a much better photocatalytic effect when used together with the common photo-catalyst TiO2.  相似文献   

10.
We report new developments on the chemical vapor deposition growth of 0.4 nm single-walled carbon nanotubes (SWCNTs) inside the linear channels of the aluminophosphate zeolite, AlPO4-5 (AFI), single crystals (0.4 nm-SWCNT@AFI). Ethylene (C2H4) and carbon monoxide (CO) were used as the feedstock. Polarized Raman spectroscopy was used to analyze the structure and quality of SWCNTs, both the radial breathing mode and G-band are much clearer and stronger than the samples grown by the old process which used template tripropylamine molecules for growing SWCNT@AFI. From the Raman spectra, it is clearly seen that the RBM is composed of two peaks at 535 and 551 cm−1. By using the pseudopotential module in Material Studio to calculate the Raman lines, the 535 cm−1 peak is attributed to the (5,0) SWCNTs and the 551 cm−1 peak to the (3,3) SWCNTs. The abundance of (4,2) is relatively small. Thermal gravity analysis showed that while the samples grown by CO display less than 1 wt% of carbon, for the samples heated in C2H4 atmosphere the weight percentage of SWCNTs is around 10%, which implies ∼30% of the AFI channels are occupied with SWCNTs, a significant increase compared with the previous samples.  相似文献   

11.
Single-walled carbon nanotube (SWCNT) random networks are easily fabricated on a wafer scale, which provides an attractive path to large-scale SWCNT-based thin-film transistor (TFT) manufacturing. However, the mixture of semiconducting SWCNTs and metallic SWCNTs (m-SWCNTs) in the networks significantly limits the TFT performance due to the m-SWCNTs dominating the charge transport. In this paper, we have achieved a uniform and high-density SWCNT network throughout a complete 3-in. Si/SiO2 wafer using a solution-based assembly method. We further utilized UV radiation to etch m-SWCNTs from the networks, and a remarkable increase in the channel current on/off ratio (Ion/Ioff) from 11 to 5.6 × 103 was observed. Furthermore, we used the SWCNT-TFTs as gas sensors to detect methyl methylphosphonate, a stimulant of benchmark threats. It was found that the SWCNT-TFT sensors treated with UV radiation show a much higher sensitivity and faster response to the analytes than those without treatment with UV radiation.  相似文献   

12.
We demonstrate that both single-walled carbon nanotube (SWCNT) types and nanotube-matrix polymer-nanotube (CNT-P-CNT) junctions have profound impact on electro-optical properties of SWCNT/polymer composites. Composite IR sensors based on CoMoCAT®-produced SWCNTs (SWCNTsCoMoCAT) significantly outperform those based on HiPco®-produced SWCNTs (SWCNTsHiPco). Higher semiconducting nanotube concentration in a SWCNT material is critical to enhance the photo effect of IR light on SWCNT/polymer nanocomposites, whereas CNT-P-CNT junctions play a dominant role in the thermal effect of IR light on supported SWCNT/polymer composite films.  相似文献   

13.
The replacement of traditional conductive carbon additives with single wall carbon nanotubes (SWCNTs) in lithium metal oxide cathode composites has been shown to enhance thermal stability as well as power capability and electrode energy density. The dispersion of 1 wt% high purity laser-produced SWCNTs in a LiNi0.8Co0.2O2 electrode created an improved percolation network over an equivalent composite electrode using 4 wt% Super C65 carbon black; evidenced by additive connectivity in SEM images and an order of magnitude increase in electrode electrical conductivity. The cathode with 1 wt% SWCNT additives showed comparable active material capacity (185–188 mAh g−1), at a low rate, and Coulombic efficiency to the cathode composite with 4 wt% Super C65. At increased cycling rates, the cathode with SWCNT additives had higher capacity retention with more than three times the capacity at 10C (16.4 mA cm−2). The thermal stability of the electrodes was evaluated by differential scanning calorimetry after charging to 4.3 V and float charging for 12 h. A 40% reduction of the cathode exothermic energy released was measured when using 1 wt% SWCNTs as the additive. Thus, the results demonstrate that replacing traditional conductive carbon additives with a lower weight loading of SWCNTs is a simple way to improve the thermal transport, safety, power, and energy characteristics of cathode composites for lithium ion batteries.  相似文献   

14.
Ultraviolet (UV) Raman and visible Raman spectroscopies were applied to study the graphitic BCx (g-BCx) phases. The Raman spectra of the g-BCx phases excited with UV laser at 244 nm have one main peak: a G peak (approximately at 1590 cm? 1), and do not have the D peak (around 1350 cm? 1) characteristic for Raman spectra of disordered graphitic phases. The D peak can be detected in all g-BCx phases when green (534 nm) or near-infrared (785 nm) lasers are used for Raman scattering excitation. The positions of the G and D peaks were found to be independent (within the experimental errors) of the B/C ratio. The pattern of the peaks in UV Raman spectra of g-BC2.1 phase indicates that the additional peaks centered at 1089 cm? 1 should be assigned to the Eg mode of B4C vibration rather than to the T mode characteristic to amorphous graphite. The high signal-to-noise (S/N) ratio and lack of fluorescence of the UV Raman spectra allow an accurate measure of bandwidth and frequency of the G peaks.  相似文献   

15.
Bilayer graphene nanoribbons (BGNRs) with a predefined width have been produced directly from bilayer graphene using a transmission electron microscope (TEM) in scanning mode operated at 300 kV. The BGNRs have been subsequently imaged in high-resolution TEM mode at 80 kV. During imaging, the interaction of the electrons with the sample induces structural transformations in the BGNR, such as closure of the edges and thinning, leading to the formation of a single-walled carbon nanotube (SWCNT). We demonstrate using molecular dynamics simulations that the produced SWCNT is, in fact, a flattened SWCNT with elliptical circumference. Density functional theory calculations show that the band gap of the flattened semiconducting SWCNTs is significantly smaller than that of the undeformed semiconducting SWCNTs, and this effect is particularly profound in narrow SWCNTs.  相似文献   

16.
Single-walled carbon nanotubes (SWNTs) produced by the high pressure CO disproportionation (HiPCO method) and purified by controlled thermal oxidation in air have been studied by Raman spectroscopy at 300 and 5 K. Raman spectra have been observed at λexc=632.8 and 441.6 nm laser excitation in the range of 160-1800 cm−1. In the low-frequency part of the spectra (the radial breathing mode range) eleven narrow lines can be detected at low temperatures, enabling an estimation of nanotube diameters (0.8-1.3 nm) and chirality. The width at half-maximum intensity of these spectral lines is about 3-4 cm−1 at 5 K. The Stokes and anti-Stokes spectra are measured at λexc=632.8 nm at room temperature. The most intense lines in these spectra are caused with the resonant Raman-scattering process. With increasing temperature from 5 to 300 K the shift (3-4 cm−1) of the most intense high-frequency component of the tangential mode (G mode) to lower frequency is observed. Based on the analysis of the Stokes/anti-Stokes spectra and the G band shape, the corresponding lines were identified with metallic or semiconducting type of nanotubes.  相似文献   

17.
Development of aluminum nitride (AlN)‐single walled carbon nanotube (SWCNT) ceramic‐matrix composite containing 1‐6 vol% SWCNT by hot pressing has been reported in this article. The composites containing 6 vol% SWCNT are dense (~99% relative density) and show high dc electrical conductivity (200 Sm?1) and thermal conductivity (62 Wm?1K?1) at room temperature. SWCNTs contain mostly metallic variety tubes obtained by controlled processing of the pristine tubes before incorporation into the ceramic matrix. Raman spectroscopy and field emission scanning electron microscopy (FESEM) of the fracture surface of the samples show the excellent survivability of the SWCNTs even after high‐temperature hot pressing. The results indicate the possibility of preparation of AlN nanocomposite for use in plasma devices and electromagnetic shielding.  相似文献   

18.
Wei L  Tezuka N  Umeyama T  Imahori H  Chen Y 《Nanoscale》2011,3(4):1845-1849
Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.  相似文献   

19.
Single-wall carbon nanotubes (SWCNTs) were produced by an electrochemical route by applying a small negative potential to a solution of acetic acid over a Au surface supporting Ni nanocatalysts. Ni nanocatalysts were grown electrochemically on Au surface and their particle sizes were controlled by deposition time. Raman spectroscopy and scanning probe microscopy observations of the catalyst and as-deposited samples and revealed that the catalyst structure strongly affects the SWCNT diameter distribution. The deposited carbon structure depended on the catalyst particle size and structure. Raman spectra confirmed the existence of selectively grown semiconducting SWCNTs with very narrow diameter distribution.  相似文献   

20.
Single-wall carbon nanotubes (SWCNTs) are graphitic materials whose colors are usually considered to be black. Actually, graphite-like black color is observed for as-synthesized SWCNT samples which are in the mixture state of the metallic and the semiconducting SWCNTs. However, after the separation of the metallic and the semiconducting types from the mixture, SWCNTs can exhibit various colors depending on their electronic types and diameters. These colorful colors are caused by the boundary conditions for the circumferential directions of the cylindrical structures. Here we discuss the underlying physical backgrounds of the colors of SWCNTs and the techniques to obtain such colorful SWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号