首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Jason Jan 《Carbon》2006,44(10):1974-1981
Layer-by-layer assembly was used to produce highly conductive thin films of carbon black and polymer. Positively and negatively-charged polyelectrolytes, polyethylenimine (PEI) and poly(acrylic acid) (PAA), were used to stabilize carbon black in aqueous mixtures that were then deposited onto a PET substrate. The effects of sonication and pH adjustment of deposition mixtures on the conductivity and transparency of deposited films was studied, along with drying temperature. Sonication and oven drying at 70 °C produced films with the lowest sheet resistance (∼1500 Ω/sq), which is a bulk resistivity below 0.2 Ω cm for a 14-bilayer film that is 1.3 μm thick. These two variables improve packing and connectivity amongst carbon black particles that results in increased electrical conductivity. Increasing the pH of the PAA-stabilized mixture and decreasing the pH of the PEI-stabilized mixture resulted in transparent films due to increased polymer charge density. These pH-adjusted films have much higher sheet resistance values than their non-adjusted counterparts due to their reduced thickness and patchy deposition. Varying the number of bilayers allows both sheet resistance and optical transparency to be tailored over a broad range. Carbon black-filled thin films able to achieve these levels of resistivity and transparency may find application in a variety of optoelectronic applications.  相似文献   

2.
This paper examines the optimization of the process parameters of GZO films deposited on polyethylene terephthalate substrates by R.F. magnetron sputtering using the Taguchi method, aiming to obtain highly transparent and conductive films. The influences of the various sputtering factors (R.F. power, sputtering pressure, deposition time, substrate temperature and post-annealing temperature) on electrical resistivity and structural, morphological and optical transmittance of GZO films are analyzed. The electrical resistivity and the optical transmittance of GZO films were improved by post-annealing the substrate during the deposition process. Experimental results indicate the optimal process parameters in GZO films deposited on polyethylene terephthalate substrates can be determined effectively. The electrical resistivity of GZO films is decreased from 1.194 × 10−3 Ω cm to 8.627 × 10−4 Ω cm and the optical transmittance is increased from 86.148% to 90%, leading to multiple performance characteristics in deposition qualities through the Grey–Taguchi method.  相似文献   

3.
Q.F. Cheng  J.J. Wen  C.H. Liu  K.L. Jiang  Q.Q. Li  S.S. Fan 《Carbon》2010,48(1):260-6045
Carbon nanotube (CNT)/epoxy composites with controllable alignment of CNTs were fabricated by a resin transfer molding process. CNTs with loading up to 16.5 wt.% were homogenously dispersed and highly aligned in the epoxy matrix. Both mechanical and electrical properties of the CNT/epoxy composites were dramatically improved with the addition of the CNTs. The Young’s modulus and tensile strength of the composites reach 20.4 GPa and 231.5 MPa, corresponding to 716% and 160% improvement compared to pure epoxy. The electrical conductivity of the composites along the direction of the CNT alignment reaches over 1 × 104 S/m.  相似文献   

4.
Spring-shaped carbon microcoils (CMCs) were embedded in silicone-rubber to form CMC/silicone-rubber composites. The electrical and mechanical properties of the composites were examined and compared with those of the composites involving straight carbon nanofibers and carbon blacks as a conductor. The electrical resistivity of the CMC/silicone-rubber composites decreased dramatically by increasing the CMC content and was as low as 100 Ω cm at 10% CMC volume content. With a compressive or tensile strain, the resistivity increased sharply much more than that of the other composites. The high resistive sensitivity of the composites is ascribed to an easy-to-deform configuration of the CMCs in the composites under an applied stress.  相似文献   

5.
Transparent and conductive composite films of carboxyl functionalized single-walled carbon nanotubes and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) were deposited on various substrates under the influence of a magnetic field. It was demonstrated that the sample dewetting under the magnetic field enhances the conductivity of the dried films. Highly transparent films (∼88%) were obtained with a low sheet resistivity of ∼90 Ω/sq. The magnetic field assisted deposition method proposed here suggests scalable production of flexible and cost-effective transparent electronics.  相似文献   

6.
Electrically conductive α-β SiAlON/TiCN composites were produced in the form of a segregated network in a ceramic matrix structure. A continuous 3D network of conductive TiCN particles was successfully achieved by mechanically coating spray-dried SiAlON granules with varying amounts of nano sized TiCN (0-10 vol.%) particles. For comparison, the same SiAlON matrix was incorporated with 25 vol.% micron sized TiCN particles to give a particle reinforced composite. Densification, together with mechanical and electrical properties of the composites produced were discussed in terms of conventional and novel approach. Fully dense composites were obtained by gas pressure sintering (GPS) under a nitrogen pressure of 100 bar at a peak temperature of 1990 °C. The electrical resistivity of the SiAlON (1 × 1013 Ω m) matrix material was drastically reduced with the addition of only 5 vol.% TiCN (18 × 10−4 Ω m) to the composites prepared by the coating method.  相似文献   

7.
A mixed-curing-agent assisted layer-by-layer method is reported to synthesize carbon nanotube (CNT)/epoxy composite films with a high CNT loading from ∼15 to ∼36 wt.%. The mixed-curing-agent consists of two types of agents, one of which is responsible for the partial initial curing at room temperature to avoid agglomeration of the CNTs, and the other for complete curing of epoxy resin at high temperature to synthesize epoxy composite films with good CNT dispersion. The electrical conductivity of the composites shows a value up to ∼12 S/m, which is much higher than that for CNT/epoxy composites with a low CNT loading prepared using conventional methods.  相似文献   

8.
Shu Jun Wang 《Carbon》2010,48(6):1815-18241
Graphene-based transparent conducting films were prepared using the following method. A chemically-reduced graphene dispersion was synthesized and graphene films were prepared from it by transfer printing, followed by thermal treatment. The resulting graphene films possessed an excellent electrical conductivity with a high transparency. A sheet resistance lower than ∼2 KΩ/sq and a transparency well over 80% were achieved at a typical wavelength of 550 nm. These properties are considered quite sufficient for many applications, such as transparent conductor films for touch panels.  相似文献   

9.
A semiconducting lanthanum-doped barium titanate ceramic has been fabricated for battery safety applications by simple means from nanoparticles prepared at room temperature by kinetically controlled vapor diffusion catalysis. The material, characterized by electron microscopy, X-ray diffraction and electrical measurements, exhibits a difficult to achieve combination of submicron grain size (∼500 nm) and attractive electrical properties of room temperature resistivity below 100 Ω cm and a 12-fold increase in resistivity through the Curie temperature (positive thermal coefficient of resistivity, PTCR). Systematic investigation of sintering conditions revealed that a short period of heating at 1350 °C under air is necessary to suppress abnormal grain growth, while precise control of the cooling rate is needed to achieve the targeted electrical properties. Cooling must be sufficiently fast to avoid complete back-oxidation, yet slow enough to facilitate oxygen adsorption at the grain boundaries to produce the thin oxide layer apparently responsible for the observed PTCR.  相似文献   

10.
Yasuhiro Yamada 《Carbon》2008,46(13):1798-1801
Carbon-based films (0.8-13 μm thick) with good bonding to the substrate and high processability were produced at 650 °C on an alumina substrate, using SU 2.5 bisphenol-A type novolac epoxy (plus triethyleneteramine curing agent) as the carbon precursor. This precursor gave crack-free and scratch resistant carbon films. Interconnected filamentary nickel nanoparticles were more effective for conductivity enhancement than silver nanoparticles or multiwalled carbon nanotubes at 5 vol.% or below, in spite of the high conductivity of silver and the high aspect ratio of nanotubes. The carbon film with 2.5 vol.% nickel showed resistivity 6 × 10−3 Ω cm.  相似文献   

11.
Sb-doped SnO2 (ATO) thin films, for use as transparent conductive oxides (TCOs), were synthesized using an electrospray technique, and their structural, electrical, and optical properties were investigated. To elucidate the optimum fabrication conditions for the best electrical and optical properties, ATO thin films were calcined using four different temperatures, 450 °C, 550 °C, 650 °C, and 750 °C. When calcined at 650 °C, ATO thin films exhibit excellent resistivity (~8.14×10−3 Ω cm), superior transmittance (~91.4% at 550 nm), and good figure of merit (~11.4×10−4 Ω−1) compared to the other samples. The enhanced properties of ATO thin films are attributed to high densification without formation of cracks, and the increased grain size of ATO nanoparticles.  相似文献   

12.
We report the influence of boron doping concentration on the microstructure, electrical and optical properties of solution-processed zinc oxide (ZnO) thin films. The B doping concentration in the resultant solutions was varied from 0 to 5 at%, and the pH value of each synthetic solution was adjusted to 7.0. XRD measurements, SEM observations, and SPM examinations revealed that boron doping produced ZnO thin films consisting of a fine grain structure with a flat surface morphology. Moreover, ZnO thin films doped with B raised the texture coefficient along the (002) plane. All B-doped ZnO (ZnO:B) thin films exhibited higher transparency than that of the undoped ZnO thin film in the wavelengths between 350 and 650 nm. The optical band gap and Urbach energy of the ZnO:B thin films were higher than those of the undoped thin film. According to electrical transport characteristics, the 1% B-doped ZnO thin film exhibited the highest Hall mobility of 17.9 cm2/V s, the highest electron concentration of 1.2×1015 cm−3, and the lowest electrical resistivity of 2.2×102 Ω cm among all of the ZnO:B thin films.  相似文献   

13.
AC and DC resistivity of Cr–Al2O3 and ZrxAly–Al2O3 composites with varying metal content were measured. A strong percolation behavior was observed in the Cr–Al2O3 system, where the AC resistivity varied nine orders of magnitude close to the percolation threshold of 28 vol.%. AC measurements were less dependant on the contact resistance than DC measurements. The best reproducibility was obtained at a frequency of 100 kHz. AC resistivity values of insulating composites differed from DC values and may also be frequency-dependant. DC measurements up to 600 °C indicate that the intermetallic phases ZrAl3 and ZrAl are PTC conductors. The electrical properties of ZrxAly–Al2O3 samples with a metal content of 29 vol.% were anisotropic, with a much higher resistivity in the pressing direction.  相似文献   

14.
In this paper, we compare two procedures for the synthesis of palladium (Pd)/polycarbonate (PC) nanocomposites as well as their morphological, optical, thermal and electrical properties. Pd nanoclusters were produced by the reduction of palladium chloride using a variation of Brust's method. Discrete Pd nanoclusters of ∼15 nm size were formed in the absence of PC in the reaction mixture (ex situ method) while agglomeration of Pd nanoclusters was noticed in the presence of PC in the reaction mixture (in situ method). Fourier transform infrared spectroscopy (FTIR) suggests nanoparticle-polymer interactions and polymer conformational changes in the in situ nanocomposite films. Even after having the same Pd content, the ex situ nanocomposites films were found to transmit more light than the in situ nanocomposites. The glass transition temperature (Tg), decreased by ∼16 °C for both the ex situ and in situ samples. Thermogravimetric analysis (TGA) indicated that the presence of Pd nanoclusters significantly improved the thermal stability of the nanocomposites, as evidenced by the enhanced onset of degradation by ∼20 °C and ∼40 °C for the in situ and ex situ nanocomposites, respectively. The electrical conductivity measurement shows a dramatic difference between these nanocomposites with a significantly higher value for the in situ nanocomposite (resistivity = 2.1 × 105 Ωm) compared to the ex situ nanocomposite (resistivity = 7.2 × 1013 Ωm).  相似文献   

15.
In this study, transparent conductive films of gallium-doped zinc oxide (GZO) are deposited on soda-lime glass substrates, under varied coating conditions (rf power, sputtering pressure, substrate-to-target distance and deposition time), using radio frequency (rf) magnetron sputtering, at room temperature. The effect of the coating parameters on the structural, morphological, electrical and optical properties of GZO films was studied. This study uses a grey-based Taguchi method, to determine the parameters of the coating process for GZO films, by considering multiple performance characteristics. In the confirmation runs, with grey relational analysis, improvements of 14.1% in the deposition rate, 39.81% in electrical resistivity and 1.38% in visible range transmittance were noted. The influence of annealing treatment, in a vacuum, oxygen, and nitrogen gas atmospheres, at temperatures ranging from 130 to 190 °C, for a period of 1 h, was also investigated. GZO films annealed at 190 °C, in a vacuum, showed the lowest electrical resistivity, at 1.07 × 10−3 Ω-cm, with about 85% optical transmittance, in the visible region. It is likely that films grown at lower temperatures (190 °C) could be coated onto polymeric substrates, to produce flexible optoelectronic devices.  相似文献   

16.
Millimeter long, vertically oriented, multi-walled carbon nanotube (MWCNT) arrays were pre-aligned and densified using spark plasma sintering (SPS) technique to form aligned MWCNT bulk samples. The combined results of X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy show that the MWCNTs largely retain their orientation and individual tubular morphology in the aligned MWCNT bulk samples, and that the SPS process induces inter- and intra-tubular bonding as well as graphene formation. In view of the one-dimensional nature of individual MWCNTs, it is particularly noteworthy that the transverse electrical resistivity ρT is slightly lower than the longitudinal resistivity ρL, whereas the transverse thermal conductivity κT is ∼50% of κL. The room temperature κL is ∼31 W/(m K), one of the highest reported in MWCNT bulk samples. In addition, the thermopower measurements show anisotropy and features of phonon drag.  相似文献   

17.
Epoxy/vapor grown carbon nanofiber composites (VGCF) with different proportions of VGCF were fabricated by the in situ process.The VGCFs were well dispersed in both of the low and high viscosity epoxy matrices, although occasional small aggregates were observed in a high viscosity epoxy of 20 wt.%. The dynamic mechanical behavior of the nanocomposite sheets was studied. The storage modulus and the glass transition temperature (Tg) of the polymer were increased by the incorporation of VGCFs.The electrical and mechanical properties of the epoxy-VGCFs nanocomposite sheets with different weight percentages of VGCFs were discussed. The results were that both had maximum tensile strength and Young’s modulus at 5 wt.% for both materials and reduced the fracture strain with increasing filler content. The electrical resistivity was decreased with the addition of filler content. Mechanical, electrical and thermal properties of low viscosity epoxy composites were resulted better than that of the high viscosity composites.  相似文献   

18.
基于不同接结纱经向间距的设计,研究了不同接结纱经向间距对环氧树脂(EP)/碳纤维间隔织物(CFSF)复合材料的力学性能、电学性能的影响规律,结合扫描电子显微镜,分析经向间距对复合材料性能的影响机制。结果表明,随着接结纱经向间距的增加,EP/CFSF复合材料的冲击强度和弯曲强度减小,韧性减弱,电阻率增大。当接结纱经向间距为4 mm时,复合材料具有较佳的综合性能,其冲击强度为13.5 k J/m~2,弯曲强度为121.30 MPa,导电性能最好,电阻率为0.077Ω·m。  相似文献   

19.
Composites of carbon fibers (CF) filled with ultrahigh molecule weight polyethylene/low density polyethylene blend matrix (UHMWPE/LDPE) were prepared by kneading method. The positive temperature coefficient (PTC) effect of electrical resistivity of UHMWPE/LDPE/CF composites was investigated by direct current (DC) and alternating current (AC) measurements over the frequency range of 100–106.5 Hz from 30 to 150 °C. The onsets of PTC effect were found to be strongly depended upon the CF content even the melting behaviors were almost same for all composites. To interpret this phenomenon, a master curve of temperature–frequency–resistivity superposition was constructed for composites with different CF contents based on the AC resistivity. The CF content dependence of correlation length was related to the onset of PTC effect. The transitions of conductor–insulator were studied quantitatively by complex planes of AC impedance, and the calculated capacitances and resistances showed a similar PTC effect under DC. Based on the analysis of AC capacitance, the average distances between CFs were calculated using a plane capacitance model which varied with CF concentration and temperature, and the tendency was consistent to the PTC effect.  相似文献   

20.
Conductive nanocomposites were prepared using styrene butadiene rubber as the polymer matrix and nanosized powder of copper–nickel (Cu–Ni) alloy as the filler. The filler loading was varied from 0 to 40 phr. The electrical conductivity of filled polymer composites is due to the formation of some continuous conductive networks in the polymer matrix. Atomic force microscopy was used to determine the particle size of the nanofiller and its nature of dispersion in the rubber matrix. The DC volume resistivity was measured against the loading of the nanofiller to check the percolation limit. The effect of temperature, applied pressure, time duration under constant compressive stress on the DC resistivity and AC conductivity of the composites with different filler loading were investigated. The change in DC resistivity and AC conductivity against temperature of these composites exhibited positive coefficient of temperature. With the change in applied pressure and time duration under constant compressive stress the DC resistivity undergoes an exponential decrease. The effect of AC field frequency on the AC conductivity was investigated. POLYM. COMPOS. 28:696–704, 2007. © 2007 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号