首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article presents the design and the implementation of dSPACE DS1104 controller board-based PI and fuzzy logic peak current-mode controllers in the voltage loop and two controllers in the current loop based first on a standard fixed hysteresis band control, followed by a variable hysteresis band control to achieve constant switching frequency for a single-phase active power factor corrector in the continuous conduction mode. All these controllers have been verified via simulation in Simulink and a real-time implementation is performed on an experimental test bench utilising a rapid prototyping tool. The controllers are experimentally compared for steady-state performance and transient response. It is shown that the PI and fuzzy logic controllers give a superior steady-state performance, whereas the fuzzy logic inference based controller can achieve better dynamic response than its PI counterpart under large load disturbance and plant uncertainties. Furthermore, the variable hysteresis band control in the current loop gives a low total harmonic distortion of the input current compared to a standard fixed hysteresis band control.  相似文献   

2.
This paper proposes a new fuzzy control solution employing 2-DOF proportional-integral-fuzzy controllers dedicated to a class of servo systems. The controlled plants in these systems, widely used in mechatronics applications, can be characterized by second-order dynamics with integral type. The original design method suggested here starts with linear design results in terms of the extended symmetrical optimum method accompanied by an iterative feedback tuning (IFT) algorithm. Next, these results are transferred to the fuzzy case by the modal equivalence principle. The convergence of the IFT algorithm is guaranteed by the derivation of sufficient global asymptotic stability conditions based on Krasovskii-LaSalle's invariant set theorem with quadratic Lyapunov function candidate. Real-time experimental results corresponding to a low-cost fuzzy controlled servo system validate the theoretical approaches.  相似文献   

3.
《Mechatronics》1999,9(5):539-552
The current trends in development and deployment of advanced electromechanical systems have facilitated the unified activities in the analysis and design of state-of-the-art motion devices, electric motors, power electronics, and digital controllers. This paper attacks the motion control problem (stabilization, tracking, and disturbance attenuation) for mechatronic systems which include permanent-magnet DC motors, power circuity, and motion controllers. By using an explicit representation of nonlinear dynamics of motors and switching converters, we approach and solve analysis and control problems to ensure a spectrum of performance objectives imposed on advanced mechatronic systems. The maximum allowable magnitude of the applied armature voltage is rated, the currents are limited, and there exist the lower and upper limits of the duty ratio of converters. To approach design tradeoffs and analyze performance (accuracy, settling time, overshoot, stability margins, and other quantities), the imposed constraints, model nonlinearities, and parameter variations are thoroughly studied in this paper. Our goal is to attain the specified characteristics and avoid deficiencies associated with linear formulation. To solve these problems, an innovative controller is synthesized to ensure performance improvements, robust tracking, and disturbance rejection. One cannot neglect constraints, and a bounded control law is designed to improve performance and guarantee robust stability. The offered approach uses a complete nonlinear mechatronic system dynamics with parameter variations, and this avenue allows one to avoid the conservative results associated with linear concept when mechatronic system dynamics is mapped by a linear constant-coefficient differential equation. To illustrate the reported framework and to validate the controller, analytical and experimental results are presented and discussed. In particular, comprehensive analysis and design with experimental verification are performed for an electric drive. A nonlinear bounded controller is designed, implemented, and experimentally tested.  相似文献   

4.
New classes of so-called complementary signals (CSs)?power-type CSs and constant-amplitude CSs?useful for testing applications are proposed. Signal design relationships are derived. Preliminary investigations of the signals show that they may be applied to fast testing of linear circuits in the low or very low frequency region.  相似文献   

5.
An optimal control scheme is designed to improve repeatability by minimizing the loading effects induced by the common processing condition of placement of a semiconductor wafer at ambient temperature on a large thermal-mass bake plate at processing temperature. The optimal control strategy is a model-based method using linear programming to minimize the worst-case deviation from a nominal temperature set point during the load disturbance condition. This results in a predictive controller that performs a predetermined heating sequence prior to the arrival of the wafer as part of the resulting feedforward/feedback strategy to eliminate the load disturbance. This procedure is based on an empirical model generated from data obtained during closed-loop operation. It is easy to design and implement for conventional thermal processing equipment. Experimental results are performed for a commercial conventional bake plate and depict an order-of-magnitude improvement in the settling time and the integral-square temperature error between the optimal predictive controller and a feedback controller for a typical load disturbance  相似文献   

6.
This paper investigates the use of disturbance models in the design of wind turbine individual pitch controllers. Previous work has used individual pitch control and disturbance models with the Multiblade Coordinate Transformation to design controllers that reduce the blade loads at the frequencies associated with the rotor speed. This paper takes a similar approach of using a disturbance model within the H design framework to account for periodic loading effects. The controller is compared with a baseline design that does not include the periodic disturbance model. In constant wind speeds, the disturbance model design is significantly better than the baseline design at canceling blade loads at the rotor frequencies. However, these load reduction improvements become negligible even under low turbulent wind conditions. The two controllers perform similarly in turbulent wind conditions because disturbance augmentation improves load reduction only at the multiples of the rotor frequency in the yaw and tilt moment channels whereas turbulence creates strong collective bending moments. In addition, turbulent wind contains energy across a broad frequency spectrum and improvements at multiples of the rotor frequency are less important in these conditions. Therefore inclusion of periodic disturbance models in the control design may not lead to the expected load reduction in fielded wind turbines.  相似文献   

7.
GA-based multiobjective PID control for a linear brushless DC motor   总被引:5,自引:0,他引:5  
This paper presents a robust output tracking control design method for a linear brushless DC motor with modeling uncertainties. Two frequency-domain specifications directly related to the mixed sensitivity function and control energy consumption are imposed to ensure stability and performance robustness. With regard to time-domain specifications, the rise time, maximum overshoot and steady-state error of the step response are considered. A generalized two-parameters proportional, integral, and derivative (PID) control framework is developed via a genetic searching approach ensuring the specifications imposed. The proposed design method is intuitive and practical that offers an effective way to implement simple but robust solutions covering a wide range of plant perturbation and, in addition, provides excellent tracking performance without resorting to excessive control. Extensive experimental and numerical results for a linear brushless motor confirm the proposed control design approach.  相似文献   

8.
最大功率点跟踪控制的目的是为了将光伏阵列发出的最大能量实时地提供给负载,使光伏发电系统的能量利用率达到最大。在光伏阵列产生电能的应用中,有许多不确定因素,如太阳光照强度、光伏阵列温度的变化、负载的变化、光伏阵列输出特性的非线性,则建立模型分析光伏阵列输出最大功率要考虑很多的因素。从模糊控制技术的分析中知道,模糊控制不需要对被控对象建立精确的数学模型,是一种相对简单的智能控制方法,对处理非线性问题有很好的效果。因此,用模糊控制法来实现MPPT可以得到比较好的效果。本文基于此研究了光伏阵列的非线性功率输出特性,建立了基于Matlab simulink/Power system的光伏阵列仿真模型,对基于模糊控制采用扰动观察法进行光伏发电最大功率点跟踪进行了仿真验证。  相似文献   

9.
The paper presents backing control of computer simulated mobile robots with multiple trailers by fuzzy modeling and control. We deal with two kinds of mobile robots: a mobile robot with five trailers and a mobile robot with ten trailers. To design fuzzy controllers, nonlinear models of the mobile robots with multiple trailers are represented by Takagi-Sugeno fuzzy models (TS fuzzy model). Before making TS fuzzy models, we simplify the nonlinear dynamics of the mobile robots. Under an assumption, TS fuzzy models are made from the simplified nonlinear models. The so-called parallel distributed compensation (PDC) is employed to design fuzzy controllers from the TS fuzzy models. Next, we derive a stability condition based on the Lyapunov approach. The stability condition of the designed fuzzy control system is cast in terms of linear matrix inequalities (LMI's) since it is reduced to a problem of finding a common Lyapunov function for a set of Lyapunov inequalities. Convex optimization techniques based on LMI's are utilized to solve the problem of finding stable feedback gains and a common Lyapunov function for the designed fuzzy control system. The simulation results show the effects of the fuzzy modeling, the controller design via the PDC, and the stability analysis based on LMIs  相似文献   

10.
The aim of this paper is to show how to build a fuzzy controller and its membership functions automatically. In a fuzzy logic controller (FLC), the proposed method allows one easily to construct a set of membership functions, called shrinking-span membership functions (SSMFs). The FLC uses Mamdani-type fuzzy controllers for the defuzzification strategy and inference operators. The FLC hardware implementation is performed on an 8-bit microcontroller. Simulation results and experimental results demonstrate that the converter can be regulated with good performance even when subjected to input disturbance and load variation. The presented approach is generally valid for the design of an FLC, and can be applied to any dc–dc converter topologies.  相似文献   

11.
A new hybrid fuzzy controller for direct torque control (DTC) induction motor drives is presented in this paper. The newly developed hybrid fuzzy control law consists of proportional-integral (PI) control at steady state, PI-type fuzzy logic control at transient state, and a simple switching mechanism between steady and transient states, to achieve satisfied performance under steady and transient conditions. The features of the presented new hybrid fuzzy controller are highlighted by comparing the performance of various control approaches, including PI control, PI-type fuzzy logic control (FLC), proportional-derivative (PD) type FLC, and combination of PD-type FLC and I control, for DTC-based induction motor drives. The pros and cons of these controllers are demonstrated by intensive experimental results. It is shown that the presented induction motor drive is with fast tracking capability, less steady state error, and robust to load disturbance while not resorting to complicated control method or adaptive tuning mechanism. Experimental results derived from a test system are presented confirming the above-mentioned claims.  相似文献   

12.
Disturbance observer based control for nonlinear systems   总被引:6,自引:0,他引:6  
This work presents a general framework for nonlinear systems subject to disturbances using disturbance observer based control (DOBC) techniques. A two-stage design procedure to improve disturbance attenuation ability of current linear/nonlinear controllers is proposed where the disturbance observer design is separated from the controller design. To facilitate this concept, a nonlinear disturbance observer is developed for disturbances generated by an exogenous system, and global exponential stability is established under certain condition. Furthermore, semiglobal stability condition of the composite controller consisting of a nonlinear controller and the nonlinear disturbance observer is established. The developed method is illustrated by the application to control of a two-link robotic manipulator.  相似文献   

13.
This paper investigates the effectiveness of a passive tuned mass damper (TMD) and fuzzy controller in reducing the structural responses subject to the external force. In general, TMD is good for linear systems. We proposed here an approach of Takagi-Sugeno (T-S) fuzzy controller to deal with the nonlinear system. To overcome the effect of modeling error between nonlinear multiple time-delay systems and T-S fuzzy models, a robustness design of fuzzy control via model-based approach is proposed in this paper. A stability criterion in terms of Lyapunov's direct method is derived to guarantee the stability of nonlinear multiple time-delay interconnected systems. Based on the decentralized control scheme and this criterion, a set of model-based fuzzy controllers is then synthesized via the technique of parallel distributed compensation (PDC) to stabilize the nonlinear multiple time-delay interconnected system and the H/sup /spl infin// control performance is achieved at the same time. Finally, the proposed methodology is illustrated by an example of a nonlinear TMD system.  相似文献   

14.
Hydraulic systems play an important role in modern industry for the reason that hydraulic actuator systems have many advantages over other technologies with electric motors, as they possess high durability and the ability to produce large forces at high speeds. Therefore, the hydraulic actuator has a wide range of application fields such as hydraulic punching, riveting, pressing machines, and molding technology, where controlled forces or pressures with high accuracy and fast response are the most significant demands. Consequently, many hybrid actuator models have been developed for studying how to control forces or pressures with best results.This paper presents a kind of hydraulic load simulator for conducting performance and stability testing related to the force control problem of hydraulic hybrid systems. In the dynamic loading process, perturbation decreases control performance such as stability, frequency response, and loading sensitivity decreasing or bad. In order to improve the control quality of the loading system while eliminating or reducing the disturbance, a grey prediction model combined with a fuzzy PID controller is suggested. Furthermore, fuzzy controllers and a tuning algorithm are used to change the grey step size in order to improve the control quality. The grey prediction compensator can improve the system settle time and overshoot problems. Simulations and experiments on the hydraulic load simulator are carried out to evaluate the effectiveness of the proposed control method when applied to hydraulic systems with various external disturbances encountered in real working conditions.  相似文献   

15.
A disturbance attenuation method in a control system, called the model-based disturbance attenuator (MBDA), is proposed, and its properties are studied. The MBDA makes the plant performs similarly to the nominal plant, as much as possible, using a compensator. Then, a controller is designed based on the nominal plant. It is shown that the MBDA is extremely robust with respect to large variations of load inertia. The MBDA is implemented in a position control system of a computer numerical control (CNC) machining center, where the velocity control system is composed of a servo-pack (PI controller), a servo motor, and a load. The MBDA attenuates external disturbances significantly in the cutting process containing high-frequency components, as well as the frictional forces containing large DC component. Several other controllers are also implemented in a position control system of a CNC machining center in a similar way as the MBDA, and the experimental results are compared with one another  相似文献   

16.
The paper presents a novel fuzzy feedback linearization control of nonlinear multi-input multi-output (MIMO) systems for the tracking and almost disturbance decoupling (ADD) performances based on the fuzzy logic control (FLC). The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system is valid for any initial condition and bounded tracking signal with the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. As soon as the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control immediately is applied via a human expert’s knowledge to improve the convergence rate. One example, which cannot be solved by the previous paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by the proposed approach. In order to demonstrate the applicability, this paper has investigated a full-vehicle suspension system.  相似文献   

17.
Fuzzy sliding-mode controllers with applications   总被引:5,自引:0,他引:5  
This paper concerns the design of robust control systems using sliding-mode control that incorporates a fuzzy tuning technique. The control law superposes equivalent control, switching control, and fuzzy control. An equivalent control law is first designed using pole placement. Switching control is then added to guarantee that the state reaches the sliding mode in the presence of parameter and disturbance uncertainties. Fuzzy tuning schemes are employed to improve control performance and to reduce chattering in the sliding mode. The practical application of fuzzy logic is proposed here as a computational-intelligence approach to engineering problems associated with sliding-mode controllers. The proposed method can have a number of industrial applications including the joint control of a hydraulically actuated mini-excavator as presented in this paper. The control hardware is described together with simulated and experimental results. High performance and attenuated chatter are achieved. The results obtained verify the validity of the proposed control approach to dynamic systems characterized by severe uncertainties  相似文献   

18.
This paper surveys how some “intelligence” can be incorporated in sliding-mode controllers (SMCs) by the use of computational intelligence methodologies in order to alleviate the well-known problems met in practical implementations of SMCs. The use of variable-structure system theory in design and stability analysis of fuzzy controllers is also discussed by drawing parallels between fuzzy control and SMCs. An overview of the research and applications reported in the literature in this respect is presented  相似文献   

19.
Based on Takagi–Sugeno (T–S) fuzzy approach we design a fuzzy speed control system for a permanent magnet synchronous motor (PMSM). We derive sufficient conditions for the existence of a T–S fuzzy speed regulator and acceleration observer in terms of linear matrix inequalities (LMIs). We parameterize the gain matrices using the LMI conditions. We implement the proposed T–S fuzzy speed control system by using a TMS320F28335 floating point DSP, and we give simulation and experimental results to verify that our method is practical and useful for controlling a PMSM under model parameter and load torque variations.  相似文献   

20.
Robust controller design for a series resonant power converter is presented when load variation and unregulated input line voltage perturbation are taken into consideration. The perturbation of unregulated line voltage is treated as an exogenous disturbance and the load variation as a structured uncertainty of the converter. An averaged model, including disturbance and model uncertainty, is then derived. Two kinds of μ synthesis-D-K and μ-K iteration schemes-are applied to design robust controllers to diminish the susceptibility of the regulated voltage to perturbations of load variation and unregulated line voltage. In addition, a classical controller is also designed for performance comparison. Finally, simulations and experimental results are presented to verify the feasibility of the robust control theory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号