首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We provide a C library, called LIBERI, for numerical evaluation of four-center electron repulsion integrals, based on successive reduction of integral dimension by using Fourier transforms. LIBERI enables us to compute the integrals for numerically defined basis functions within 10−5 Hartree accuracy as well as their derivatives with respect to the atomic nuclear positions. Damping of the Coulomb interaction can also be imposed to take account of screening effect.

Program summary

Program title: LIBERICatalogue identifier: AEGG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 44 091No. of bytes in distributed program, including test data, etc.: 1 692 085Distribution format: tar.gzProgramming language: CComputer: allOperating system: any Unix-like systemRAM: 5-10 MbClassification: 7.4External routines: Lapack (http://www.netlib.org/lapack/), Blas (http://www.netlib.org/blas/), FFTW3 (http://www.fftw.org/)Nature of problem: Numerical evaluation of four-center electron-repulsion integrals.Solution method: Four-center electron-repulsion integrals are computed for given basis function set, based on successive reduction of integral dimension using Fourier transform.Running time: 0.5 sec for the demo program supplied with the package.  相似文献   

2.
We report on a program for the numerical evaluation of divergent multi-loop integrals. The program is based on iterated sector decomposition. We improve the original algorithm of Binoth and Heinrich such that the program is guaranteed to terminate. The program can be used to compute numerically the Laurent expansion of divergent multi-loop integrals regulated by dimensional regularisation. The symbolic and the numerical steps of the algorithm are combined into one program.

Program summary

Program title: sector_decompositionCatalogue identifier: AEAG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 47 506No. of bytes in distributed program, including test data, etc.: 328 485Distribution format: tar.gzProgramming language: C++Computer: allOperating system: UnixRAM: Depending on the complexity of the problemClassification: 4.4External routines: GiNaC, available from http://www.ginac.de, GNU scientific library, available from http://www.gnu.org/software/gslNature of problem: Computation of divergent multi-loop integrals.Solution method: Sector decomposition.Restrictions: Only limited by the available memory and CPU time.Running time: Depending on the complexity of the problem.  相似文献   

3.
4.
The Motion4D-library solves the geodesic equation as well as the parallel- and Fermi-Walker-transport in four-dimensional Lorentzian spacetimes numerically. Initial conditions are given with respect to natural local tetrads which are adapted to the symmetries or the coordinates of the spacetime. Beside some already implemented metrics like the Schwarzschild and Kerr metric, the object oriented structure of the library permits to implement other metrics or integrators in a straight forward manner.

Program summary

Program title: Motion4D-libraryCatalogue identifier: AEEX_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 150 425No. of bytes in distributed program, including test data, etc.: 5 139 407Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, Unix, WindowsRAM: 39 MBytesClassification: 1.5External routines: Gnu Scientific Library (GSL) (http://www.gnu.org/software/gsl/)Nature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes.Solution method: Integration of ordinary differential equationsRunning time: The test runs provided with the distribution require only a few seconds to run.  相似文献   

5.
6.
7.
HFOLD (Higgs Full One Loop Decays) is a Fortran program package for calculating all MSSM Higgs two-body decay widths and the corresponding branching ratios at full one-loop level. The package is done in the SUSY Parameter Analysis convention and supports the SUSY Les Houches Accord input and output format.

Program summary

Program title: HFOLDCatalogue identifier: AEJG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 340 621No. of bytes in distributed program, including test data, etc.: 1 760 051Distribution format: tar.gzProgramming language: Fortran 77Computer: Workstation, PCOperating system: LinuxRAM: 524 288 000 BytesClassification: 11.1External routines: LoopTools 2.2 (http://www.feynarts.de/looptools/), SLHALib 2.2 (http://www.feynarts.de/slha/). The LoopTools code is included in the distribution package.Nature of problem: A future high-energy e+e linear collider will be the best environment for the precise measurements of masses, cross sections, branching ratios, etc. Experimental accuracies are expected at the per-cent down to the per-mile level. These must be matched from the theoretical side. Therefore higher order calculations are mandatory.Solution method: This program package calculates all MSSM Higgs two-body decay widths and the corresponding branching ratios at full one-loop level. The renormalization is done in the DR scheme following the SUSY Parameter Analysis convention. The program supports the SUSY Les Houches Accord input and output format.Running time: The example provided takes only a few seconds to run.  相似文献   

8.
We present a driver program for performing replica-exchange molecular dynamics simulations with the Tinker package. Parallelization is based on the Message Passing Interface, with every replica assigned to a separate process. The algorithm is not communication intensive, which makes the program suitable for running even on loosely coupled cluster systems. Particular attention is paid to the practical aspects of analyzing the program output.

Program summary

Program title: TiReXCatalogue identifier: AEEK_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEK_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 43 385No. of bytes in distributed program, including test data, etc.: 502 262Distribution format: tar.gzProgramming language: Fortran 90/95Computer: Most UNIX machinesOperating system: LinuxHas the code been vectorized or parallelized?: parallelized with MPIClassification: 16.13External routines: TINKER version 4.2 or 5.0, built as a libraryNature of problem: Replica-exchange molecular dynamics.Solution method: Each replica is assigned to a separate process; temperatures are swapped between replicas at regular time intervals.Running time: The sample run may take up to a few minutes.  相似文献   

9.
Vscape is an interactive tool for studying the one-loop effective potential of an ungauged supersymmetric model of chiral multiplets. The program allows the user to define a supersymmetric model by specifying the superpotential. The F-terms and the scalar and fermionic mass matrices are calculated symbolically. The program then allows you to search numerically for (meta)stable minima of the one-loop effective potential. Additional commands enable you to further study specific minima, by, e.g., computing the mass spectrum for those vacua. Vscape combines the flexibility of symbolic software, with the speed of a numerical package.

Program summary

Program title:Vscape 1.1.1Catalogue identifier: ADZW_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZW_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 80 507No. of bytes in distributed program, including test data, etc.: 6 708 938Distribution format: tar.gzProgramming language: C++Computer: Pentium 4 PC Computers: need (GNU) C++ compiler, Linux standard GNU installation (./configure; make; make install). A precompiled Windows XP version is included in the distribution packageOperating system: Linux, Windows XP using cygwinRAM: 10 MBWord size: 32 bitsClassification: 11.6External routines: GSL (http://www.gnu.org/software/gsl/), CLN (http://www.ginac.de/CLN/), GiNaC (http://directory.fsf.org/GiNaC.html)Nature of problem:Vscape is an interactive tool for studying the one-loop effective potential of an ungauged supersymmetric model of chiral multiplets. The program allows the user to define a supersymmetric model by specifying the superpotential. The F-terms and the scalar and fermionic mass matrices are calculated symbolically. The program then allows you to search numerically for (meta)stable minima of the one-loop effective potential. Additional commands enable you to further study specific minima, by, e.g., computing the mass spectrum for those vacua. Vscape combines the flexibility of symbolic software with the speed of a numerical package.Solution method: Coleman-Weinberg potential is computed using numerical matrix diagonalization. Minima of the one-loop effective potential are found using the Nelder and Mead simplex algorithm. The one-loop effective potential can be studied using numerical differentiation. Symbolic users interface implemented using flex and bison.Restrictions:N=1 supersymmetric chiral models onlyUnusual features: GiNaC (+CLN), GSL, ReadLib (not essential)Running time: Interactive users interface. Most commands execute in a few ms. Computationally intensive commands execute in order of minutes, depending on the complexity of the user defined model.  相似文献   

10.
Computer generated holograms are usually generated using commercial software like MATLAB, MATHCAD, Mathematica, etc. This work is an approach in doing the same using freely distributed open source packages and Operating System. A Fourier hologram is generated using this method and tested for simulated and optical reconstruction. The reconstructed images are in good agreement with the objects chosen. The significance of using such a system is also discussed.

Program summary

Program title: FHOLOCatalogue identifier: AEDS_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDS_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 176 336No. of bytes in distributed program, including test data, etc.: 4 294 872Distribution format: tar.gzProgramming language: C++Computer: any X86 micro computerOperating system: Linux (Debian Etch)RAM: 512 MBClassification: 18Nature of problem: To generate a Fourier Hologram in micro computer only by using open source operating system and packages.Running time: Depends on the matrix size. 10 sec for a matrix of size 256×256.  相似文献   

11.
An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk.

Program summary

Program title: TransmittanceCatalogue identifier: AEBQ_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5778No. of bytes in distributed program, including test data, etc.: 90 474Distribution format: tar.gzProgramming language: JavaComputer: Developed on PC-Pentium platformOperating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OSRAM: VariableClassification: 18Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter.Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool.Running time: Real-time simulations  相似文献   

12.
A method is introduced to calculate the UV-divergent parts at one-loop level in dimensional regularization. The method is based on the recursion, and the basic integrals are just the scaleless integrals after the recursive reduction, which involve no other momentum scales except the loop momentum itself. The method can be easily implemented in any symbolic computer language, and a implementation in Mathematica is ready to use.Program summaryProgram title: UVPartCatalogue identifier: AELY_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELY_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 26 361No. of bytes in distributed program, including test data, etc.: 412 084Distribution format: tar.gzProgramming language: MathematicaComputer: Any computer where the Mathematica is running.Operating system: Any capable of running Mathematica.Classification: 11.1External routines: FeynCalc (http://www.feyncalc.org/), FeynArts (http://www.feynarts.de/)Nature of problem: To get the UV-divergent part of any one-loop expression.Solution method: UVPart is a Mathematica package where the recursive method has been implemented.Running time: In general it is below one second.  相似文献   

13.
The GeodesicViewer realizes exocentric two- and three-dimensional illustrations of lightlike and timelike geodesics in the general theory of relativity. By means of an intuitive graphical user interface, all parameters of a spacetime as well as the initial conditions of the geodesics can be modified interactively. This makes the GeodesicViewer a useful instrument for the exploration of geodesics in four-dimensional Lorentzian spacetimes.

Program summary

Program title: GeodesicViewerCatalogue identifier: AEFP_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFP_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 168 868No. of bytes in distributed program, including test data, etc.: 6 076 202Distribution format: tar.gzProgramming language: C++, Qt, Qwt, OpenGLComputer: All platforms with a C++ compiler, Qt, Qwt, OpenGLOperating system: Linux, Mac OS XRAM: 24 MbytesClassification: 1.5External routines:
Gnu Scientific Library (GSL) (http://www.gnu.org/software/gsl/)
Motion4D (included in the package). The Motion4D library can also be downloaded from CPC. Catalogue identifier: AEEX
Qt (http://qt.nokia.com/downloads)
Qwt (http://qwt.sourceforge.net/)
OpenGL (http://www.opengl.org/)
Nature of problem: Illustrate geodesics in four-dimensional Lorentzian spacetimes.Solution method: Integration of ordinary differential equations. 3D-Rendering via OpenGL.Running time: Interactive. The examples given take milliseconds.  相似文献   

14.
15.
A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets.

Program summary

Program title: NIXSW Planewave SolverCatalogue identifier: ADZE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 16 874No. of bytes in distributed program, including test data, etc.: 1 631 874Distribution format: tar.gzProgramming language: Borland C++ Builder 5Computer: Any Windows CompatibleOperating system: Windows 2000 and XPRAM: <10 MBClassification: 7.4Nature of problem: Using NIXSW experimental data to calculate atomic positions of adsorbates.Restrictions: Data from substrates must have cubic, tetragonal or orthorhombic crystal structures i.e. with 90° between conventional cell axes.Running time: Seconds-minutes dependant on the number of plane waves and the number of atomic sites.  相似文献   

16.
A computational approach is presented for efficient solution of two-dimensional few-body problems, such as quantum dots or excitonic complexes, using the stochastic variational method. The computer program can be used to calculate the energies and wave functions of various two-dimensional systems.

Program summary

Program title: svm-2dCatalogue identifier: AEBE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5091No. of bytes in distributed program, including test data, etc.: 130 963Distribution format: tar.gzProgramming language: Fortran 90Computer: The program should work on any system with a Fortran 90 compilerOperating system: The program should work on any system with a Fortran 90 compilerClassification: 7.3Nature of problem: Variational calculation of energies and wave functions using Correlated Gaussian basis.Solution method: Two-dimensional few-electron problems are solved by the variational method. The ground state wave function is expanded into Correlated Gaussian basis functions and the parameters of the basis states are optimized by a stochastic selection procedure. Accurate results can be obtained for 2-6 electron systems.Running time: A couple of hours for a typical system.  相似文献   

17.
A program package for MATLAB is introduced that helps calculations in quantum information science and quantum optics. It has commands for the following operations: (i) Reordering the qudits of a quantum register, computing the reduced state of a quantum register. (ii) Defining important quantum states easily. (iii) Formatted input and output for quantum states and operators. (iv) Constructing operators acting on given qudits of a quantum register and constructing spin chain Hamiltonians. (v) Partial transposition, matrix realignment and other operations related to the detection of quantum entanglement. (vi) Generating random state vectors, random density matrices and random unitaries.

Program summary

Program title:QUBIT4MATLAB V3.0Catalogue identifier:AEAZ_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAZ_v1_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:5683No. of bytes in distributed program, including test data, etc.: 37 061Distribution format:tar.gzProgramming language:MATLAB 6.5; runs also on OctaveComputer:Any which supports MATLAB 6.5Operating system:Any which supports MATLAB 6.5; e.g., Microsoft Windows XP, LinuxClassification:4.15Nature of problem: Subroutines helping calculations in quantum information science and quantum optics.Solution method: A program package, that is, a set of commands is provided for MATLAB. One can use these commands interactively or they can also be used within a program.Running time:10 seconds-1 minute  相似文献   

18.
This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from “noise”, we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not.

Program summary

Program title: Fractal Analysis v01Catalogue identifier: AEEG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 29 690No. of bytes in distributed program, including test data, etc.: 4 967 319Distribution format: tar.gzProgramming language: MS Visual Basic 6.0Computer: PCOperating system: MS Windows 98 or laterRAM: 30MClassification: 14Nature of problem: Estimating the fractal dimension of images.Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from “noise”. User friendly graphical interface.Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format.Running time: In a first approximation, the algorithm is linear.  相似文献   

19.
The formatting of the M-shell atomic parameters imbedded in file XCSC.H in ISICS has been corrected. The problem only affected cross section calculations for Uranium and heavier elements. The corrected version of ISICS has been re-compiled and is now available.

New version program summary

Program title: ISICSCatalogue identifier: ADDS_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 4645No. of bytes in distributed program, including test data, etc.: 106 731Distribution format: tar.gzProgramming language: C++Computer: 80486 or higher-level PCsOperating system: WINDOWS 98 through WINDOWS XPClassification: 16.7Does the new version supersede the previous version?: YesNature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions.Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits.Reasons for new version: The formatting of the M-shell atomic parameters involving cross section calculations for Uranium and heavier elements needed to be corrected.Summary of revisions: The affected file XCSC.H in ISICS has been corrected and ISICS has been recompiled.Restrictions: The consumed CPU time increases with the atomic shell (K, L, M), but execution is still very fast.Running time: This depends on which shell and the number of different energies to be used in the calculation. For example, to calculate K-shell cross sections for protons striking carbon for 19 different proton energies it took less than 10 s; to calculate M-shell cross sections for protons on gold for 21 proton energies it took 4.2 min.  相似文献   

20.
We present an algorithm for the derivation of Dyson-Schwinger equations of general theories that is suitable for an implementation within a symbolic programming language. Moreover, we introduce the Mathematica package DoDSE1 which provides such an implementation. It derives the Dyson-Schwinger equations graphically once the interactions of the theory are specified. A few examples for the application of both the algorithm and the DoDSE package are provided.

Program summary

Program title: DoDSECatalogue identifier: AECT_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECT_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 105 874No. of bytes in distributed program, including test data, etc.: 262 446Distribution format: tar.gzProgramming language: Mathematica 6 and higherComputer: all on which Mathematica is availableOperating system: all on which Mathematica is availableClassification: 11.1, 11.4, 11.5, 11.6Nature of problem: Derivation of Dyson-Schwinger equations for a theory with given interactions.Solution method: Implementation of an algorithm for the derivation of Dyson-Schwinger equations.Unusual features: The results can be plotted as Feynman diagrams in Mathematica.Running time: Less than a second to minutes for Dyson-Schwinger equations of higher vertex functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号