首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk.

Program summary

Program title: TransmittanceCatalogue identifier: AEBQ_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5778No. of bytes in distributed program, including test data, etc.: 90 474Distribution format: tar.gzProgramming language: JavaComputer: Developed on PC-Pentium platformOperating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OSRAM: VariableClassification: 18Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter.Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool.Running time: Real-time simulations  相似文献   

2.
We describe a program for computing the abundances of light elements produced during Big Bang Nucleosynthesis which is publicly available at http://parthenope.na.infn.it/. Starting from nuclear statistical equilibrium conditions the program solves the set of coupled ordinary differential equations, follows the departure from chemical equilibrium of nuclear species, and determines their asymptotic abundances as function of several input cosmological parameters as the baryon density, the number of effective neutrino, the value of cosmological constant and the neutrino chemical potential. The program requires commercial NAG library routines.

Program summary

Program title: PArthENoPECatalogue identifier: AEAV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 10 033No. of bytes in distributed program, including test data, etc.: 46 002Distribution format: tar.gzProgramming language: Fortran 77Computer: PC-compatible running Fortran on Unix, MS Windows or LinuxOperating system: Windows 2000, Windows XP, LinuxClassification: 1.2, 1.9, 17.8External routines: NAG LibrariesNature of problem: Computation of yields of light elements synthesized in the primordial universe.Solution method: BDF method for the integration of the ODEs, implemented in a NAG routine.Running time: 90 sec with default parameters on a Dual Xeon Processor 2.4 GHz with 2 GB RAM.  相似文献   

3.
A program package, which facilitates computations in the framework of Analytic approach to QCD, is developed and described in detail. The package includes both the calculated explicit expressions for relevant spectral functions up to the four-loop level and the subroutines for necessary integrals.

Program summary

Program title: QCDMAPTCatalogue identifier: AEGP_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGP_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2579No. of bytes in distributed program, including test data, etc.: 180 052Distribution format: tar.gzProgramming language: Maple 9 and higherComputer: Any which supports Maple 9Operating system: Any which supports Maple 9Classification: 11.1, 11.5, 11.6Nature of problem: Subroutines helping computations within Analytic approach to QCD.Solution method: A program package for Maple is provided. It includes both the explicit expressions for relevant spectral functions and the subroutines for basic integrals used in the framework of Analytic approach to QCD.Running time: Template program running time is about a minute (depends on CPU).  相似文献   

4.
We present an algorithm for the derivation of Dyson-Schwinger equations of general theories that is suitable for an implementation within a symbolic programming language. Moreover, we introduce the Mathematica package DoDSE1 which provides such an implementation. It derives the Dyson-Schwinger equations graphically once the interactions of the theory are specified. A few examples for the application of both the algorithm and the DoDSE package are provided.

Program summary

Program title: DoDSECatalogue identifier: AECT_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECT_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 105 874No. of bytes in distributed program, including test data, etc.: 262 446Distribution format: tar.gzProgramming language: Mathematica 6 and higherComputer: all on which Mathematica is availableOperating system: all on which Mathematica is availableClassification: 11.1, 11.4, 11.5, 11.6Nature of problem: Derivation of Dyson-Schwinger equations for a theory with given interactions.Solution method: Implementation of an algorithm for the derivation of Dyson-Schwinger equations.Unusual features: The results can be plotted as Feynman diagrams in Mathematica.Running time: Less than a second to minutes for Dyson-Schwinger equations of higher vertex functions.  相似文献   

5.
Computer generated holograms are usually generated using commercial software like MATLAB, MATHCAD, Mathematica, etc. This work is an approach in doing the same using freely distributed open source packages and Operating System. A Fourier hologram is generated using this method and tested for simulated and optical reconstruction. The reconstructed images are in good agreement with the objects chosen. The significance of using such a system is also discussed.

Program summary

Program title: FHOLOCatalogue identifier: AEDS_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDS_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 176 336No. of bytes in distributed program, including test data, etc.: 4 294 872Distribution format: tar.gzProgramming language: C++Computer: any X86 micro computerOperating system: Linux (Debian Etch)RAM: 512 MBClassification: 18Nature of problem: To generate a Fourier Hologram in micro computer only by using open source operating system and packages.Running time: Depends on the matrix size. 10 sec for a matrix of size 256×256.  相似文献   

6.
A computer package (CNMS) is presented aimed at the solution of finite-level quantum optimal control problems. This package is based on a recently developed computational strategy known as monotonic schemes.Quantum optimal control problems arise in particular in quantum optics where the optimization of a control representing laser pulses is required. The purpose of the external control field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources, are accommodated through appropriately chosen cost functionals.

Program summary

Program title: CNMSCatalogue identifier: ADEB_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 770No. of bytes in distributed program, including test data, etc.: 7098Distribution format: tar.gzProgramming language: MATLAB 6Computer: AMD Athlon 64 × 2 Dual, 2:21 GHz, 1:5 GB RAMOperating system: Microsoft Windows XPWord size: 32Classification: 4.9Nature of problem: Quantum controlSolution method: IterativeRunning time: 60-600 sec  相似文献   

7.
We present a driver program for performing replica-exchange molecular dynamics simulations with the Tinker package. Parallelization is based on the Message Passing Interface, with every replica assigned to a separate process. The algorithm is not communication intensive, which makes the program suitable for running even on loosely coupled cluster systems. Particular attention is paid to the practical aspects of analyzing the program output.

Program summary

Program title: TiReXCatalogue identifier: AEEK_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEK_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 43 385No. of bytes in distributed program, including test data, etc.: 502 262Distribution format: tar.gzProgramming language: Fortran 90/95Computer: Most UNIX machinesOperating system: LinuxHas the code been vectorized or parallelized?: parallelized with MPIClassification: 16.13External routines: TINKER version 4.2 or 5.0, built as a libraryNature of problem: Replica-exchange molecular dynamics.Solution method: Each replica is assigned to a separate process; temperatures are swapped between replicas at regular time intervals.Running time: The sample run may take up to a few minutes.  相似文献   

8.
In this paper we present the package S@M (Spinors@Mathematica) which implements the spinor-helicity formalism in Mathematica. The package allows the use of complex-spinor algebra along with the multi-purpose features of Mathematica. The package defines the spinor objects with their basic properties along with functions to manipulate them. It also offers the possibility of evaluating the spinorial objects numerically at every computational step. The package is therefore well suited to be used in the context of on-shell technology, in particular for the evaluation of scattering amplitudes at tree- and loop-level.

Program summary

Program title: S@MCatalogue identifier: AEBF_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBF_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 14 404No. of bytes in distributed program, including test data, etc.: 77 536Distribution format: tar.gzProgramming language: MathematicaComputer: All computers running MathematicaOperating system: Any system running MathematicaClassification: 4.4, 5, 11.1Nature of problem: Implementation of the spinor-helicity formalismSolution method: Mathematica implementationRunning time: The notebooks provided with the package take only a few seconds to run.  相似文献   

9.
A method is introduced to calculate the UV-divergent parts at one-loop level in dimensional regularization. The method is based on the recursion, and the basic integrals are just the scaleless integrals after the recursive reduction, which involve no other momentum scales except the loop momentum itself. The method can be easily implemented in any symbolic computer language, and a implementation in Mathematica is ready to use.Program summaryProgram title: UVPartCatalogue identifier: AELY_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELY_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 26 361No. of bytes in distributed program, including test data, etc.: 412 084Distribution format: tar.gzProgramming language: MathematicaComputer: Any computer where the Mathematica is running.Operating system: Any capable of running Mathematica.Classification: 11.1External routines: FeynCalc (http://www.feyncalc.org/), FeynArts (http://www.feynarts.de/)Nature of problem: To get the UV-divergent part of any one-loop expression.Solution method: UVPart is a Mathematica package where the recursive method has been implemented.Running time: In general it is below one second.  相似文献   

10.
The Motion4D-library solves the geodesic equation as well as the parallel- and Fermi-Walker-transport in four-dimensional Lorentzian spacetimes numerically. Initial conditions are given with respect to natural local tetrads which are adapted to the symmetries or the coordinates of the spacetime. Beside some already implemented metrics like the Schwarzschild and Kerr metric, the object oriented structure of the library permits to implement other metrics or integrators in a straight forward manner.

Program summary

Program title: Motion4D-libraryCatalogue identifier: AEEX_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 150 425No. of bytes in distributed program, including test data, etc.: 5 139 407Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, Unix, WindowsRAM: 39 MBytesClassification: 1.5External routines: Gnu Scientific Library (GSL) (http://www.gnu.org/software/gsl/)Nature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes.Solution method: Integration of ordinary differential equationsRunning time: The test runs provided with the distribution require only a few seconds to run.  相似文献   

11.
We report on a program for the numerical evaluation of divergent multi-loop integrals. The program is based on iterated sector decomposition. We improve the original algorithm of Binoth and Heinrich such that the program is guaranteed to terminate. The program can be used to compute numerically the Laurent expansion of divergent multi-loop integrals regulated by dimensional regularisation. The symbolic and the numerical steps of the algorithm are combined into one program.

Program summary

Program title: sector_decompositionCatalogue identifier: AEAG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 47 506No. of bytes in distributed program, including test data, etc.: 328 485Distribution format: tar.gzProgramming language: C++Computer: allOperating system: UnixRAM: Depending on the complexity of the problemClassification: 4.4External routines: GiNaC, available from http://www.ginac.de, GNU scientific library, available from http://www.gnu.org/software/gslNature of problem: Computation of divergent multi-loop integrals.Solution method: Sector decomposition.Restrictions: Only limited by the available memory and CPU time.Running time: Depending on the complexity of the problem.  相似文献   

12.
A computational approach is presented for efficient solution of two-dimensional few-body problems, such as quantum dots or excitonic complexes, using the stochastic variational method. The computer program can be used to calculate the energies and wave functions of various two-dimensional systems.

Program summary

Program title: svm-2dCatalogue identifier: AEBE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5091No. of bytes in distributed program, including test data, etc.: 130 963Distribution format: tar.gzProgramming language: Fortran 90Computer: The program should work on any system with a Fortran 90 compilerOperating system: The program should work on any system with a Fortran 90 compilerClassification: 7.3Nature of problem: Variational calculation of energies and wave functions using Correlated Gaussian basis.Solution method: Two-dimensional few-electron problems are solved by the variational method. The ground state wave function is expanded into Correlated Gaussian basis functions and the parameters of the basis states are optimized by a stochastic selection procedure. Accurate results can be obtained for 2-6 electron systems.Running time: A couple of hours for a typical system.  相似文献   

13.
The routine Milne provides accurate numerical values for the classical Milne's problem of neutron transport for the planar one speed and isotropic scattering case. The solution is based on the Case eigen-function formalism. The relevant X functions are evaluated accurately by the Double Exponential quadrature. The calculated quantities are the extrapolation distance and the scalar and the angular fluxes. Also, the H function needed in astrophysical calculations is evaluated as a byproduct.

Program summary

Program title: MilneCatalogue identifier: AEGS_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGS_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 701No. of bytes in distributed program, including test data, etc.: 6845Distribution format: tar.gzProgramming language: Fortran 77Computer: PC under Linux or WindowsOperating system: Ubuntu 8.04 (Kernel version 2.6.24-16-generic), Windows-XPClassification: 4.11, 21.1, 21.2Nature of problem: The X functions are integral expressions. The convergence of these regular and Cauchy Principal Value integrals are impaired by the singularities of the integrand in the complex plane. The DE quadrature scheme tackles these singularities in a robust manner compared to the standard Gauss quadrature.Running time: The test included in the distribution takes a few seconds to run.  相似文献   

14.
A program package for MATLAB is introduced that helps calculations in quantum information science and quantum optics. It has commands for the following operations: (i) Reordering the qudits of a quantum register, computing the reduced state of a quantum register. (ii) Defining important quantum states easily. (iii) Formatted input and output for quantum states and operators. (iv) Constructing operators acting on given qudits of a quantum register and constructing spin chain Hamiltonians. (v) Partial transposition, matrix realignment and other operations related to the detection of quantum entanglement. (vi) Generating random state vectors, random density matrices and random unitaries.

Program summary

Program title:QUBIT4MATLAB V3.0Catalogue identifier:AEAZ_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAZ_v1_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:5683No. of bytes in distributed program, including test data, etc.: 37 061Distribution format:tar.gzProgramming language:MATLAB 6.5; runs also on OctaveComputer:Any which supports MATLAB 6.5Operating system:Any which supports MATLAB 6.5; e.g., Microsoft Windows XP, LinuxClassification:4.15Nature of problem: Subroutines helping calculations in quantum information science and quantum optics.Solution method: A program package, that is, a set of commands is provided for MATLAB. One can use these commands interactively or they can also be used within a program.Running time:10 seconds-1 minute  相似文献   

15.
We describe the Monte Carlo event generator for black hole production and decay in proton-proton collisions - QBH version 1.02. The generator implements a model for quantum black hole production and decay based on the conservation of local gauge symmetries and democratic decays. The code in written entirely in C++ and interfaces to the PYTHIA 8 Monte Carlo code for fragmentation and decays.

Program summary

Program title: QBHCatalogue identifier: AEGU_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGU_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 10 048No. of bytes in distributed program, including test data, etc.: 118 420Distribution format: tar.gzProgramming language: C++Computer: x86Operating system: Scientific Linux, Mac OS XRAM: 1 GBClassification: 11.6External routines: PYTHIA 8130 (http://home.thep.lu.se/~torbjorn/pythiaaux/present.html) and LHAPDF (http://projects.hepforge.org/lhapdf/)Nature of problem: Simulate black hole production and decay in proton-proton collision.Solution method: Monte Carlo simulation using importance sampling.Running time: Eight events per second.  相似文献   

16.
A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets.

Program summary

Program title: NIXSW Planewave SolverCatalogue identifier: ADZE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 16 874No. of bytes in distributed program, including test data, etc.: 1 631 874Distribution format: tar.gzProgramming language: Borland C++ Builder 5Computer: Any Windows CompatibleOperating system: Windows 2000 and XPRAM: <10 MBClassification: 7.4Nature of problem: Using NIXSW experimental data to calculate atomic positions of adsorbates.Restrictions: Data from substrates must have cubic, tetragonal or orthorhombic crystal structures i.e. with 90° between conventional cell axes.Running time: Seconds-minutes dependant on the number of plane waves and the number of atomic sites.  相似文献   

17.
We describe a numerical model of an internal pellet target to study the beam dynamics in storage rings, where the nuclear experiments with such type of target are planned. In this model the Monte Carlo algorithm is applied to evaluate the particle coordinates and momentum deviation depending on time and parameters of the target. One has to mention that due to statistical character of the pellet distribution in the target the analytical techniques are not applicable. This is also true for the particle distribution in the stored beam, which is influenced by various effects (such as a cooling process, intra-beam scattering, betatron oscillation, space charge effect). In this case only the Monte Carlo technique to model energy straggling in combination with the pellet distribution in the target should be considered.

Program summary

Program title: PETAG01Catalogue identifier: ADZV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1068No. of bytes in distributed program, including test data, etc.: 11 314Distribution format: tar.gzProgramming language: Fortran 77, C/C++Computer: Platform independentOperating system: MS Windows 95/2000/XP, Linux (Unix)RAM: 128 MBClassification: 11.10Nature of problem: Particle beam dynamics with use of the pellet target.Solution method: Monte Carlo with analytical approximation.Running time: dozens of seconds  相似文献   

18.
Computer simulation techniques have found extensive use in establishing empirical relationships between three-dimensional (3d) and two-dimensional (2d) projected properties of particles produced by the process of growth through the agglomeration of smaller particles (monomers). In this paper, we describe a package, FracMAP, that has been written to simulate 3d quasi-fractal agglomerates and create their 2d pixelated projection images by restricting them to stable orientations as commonly encountered for quasi-fractal agglomerates collected on filter media for electron microscopy. Resulting 2d images are analyzed for their projected morphological properties.

Program summary

Program title: FracMAPCatalogue identifier: AEDD_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDD_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 4722No. of bytes in distributed program, including test data, etc.: 27 229Distribution format: tar.gzProgramming language: C++Computer: PCOperating system: Windows, LinuxRAM: 2.0 MegabytesClassification: 7.7Nature of problem: Solving for a suitable fractal agglomerate construction under constraints of typical morphological parameters.Solution method: Monte Carlo approximation.Restrictions: Problem complexity is not representative of run-time, since Monte Carlo iterations are of a constant complexity.Additional comments: The distribution file contains two versions of the FracMAP code, one for Windows and one for Linux.Running time: 1 hour for a fractal agglomerate of size 25 on a single processor.  相似文献   

19.
We provide a C library, called LIBERI, for numerical evaluation of four-center electron repulsion integrals, based on successive reduction of integral dimension by using Fourier transforms. LIBERI enables us to compute the integrals for numerically defined basis functions within 10−5 Hartree accuracy as well as their derivatives with respect to the atomic nuclear positions. Damping of the Coulomb interaction can also be imposed to take account of screening effect.

Program summary

Program title: LIBERICatalogue identifier: AEGG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 44 091No. of bytes in distributed program, including test data, etc.: 1 692 085Distribution format: tar.gzProgramming language: CComputer: allOperating system: any Unix-like systemRAM: 5-10 MbClassification: 7.4External routines: Lapack (http://www.netlib.org/lapack/), Blas (http://www.netlib.org/blas/), FFTW3 (http://www.fftw.org/)Nature of problem: Numerical evaluation of four-center electron-repulsion integrals.Solution method: Four-center electron-repulsion integrals are computed for given basis function set, based on successive reduction of integral dimension using Fourier transform.Running time: 0.5 sec for the demo program supplied with the package.  相似文献   

20.
This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from “noise”, we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not.

Program summary

Program title: Fractal Analysis v01Catalogue identifier: AEEG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 29 690No. of bytes in distributed program, including test data, etc.: 4 967 319Distribution format: tar.gzProgramming language: MS Visual Basic 6.0Computer: PCOperating system: MS Windows 98 or laterRAM: 30MClassification: 14Nature of problem: Estimating the fractal dimension of images.Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from “noise”. User friendly graphical interface.Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format.Running time: In a first approximation, the algorithm is linear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号