首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wahman DG  Katz LE  Speitel GE 《Water research》2011,45(4):1669-1680
Nitrifying biofilters seeded with three different mixed-culture sources removed trichloromethane (TCM) and dibromochloromethane (DBCM) with removals reaching 18% for TCM and 75% for DBCM. In addition, resuspended biofilm removed TCM, bromodichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests, demonstrating that the biofilters contained organisms capable of biotransforming the four regulated trihalomethanes (THMs) commonly found in treated drinking water. Upon the initial and subsequent increased TCM addition, total ammonia nitrogen (TOTNH3) removal decreased and then reestablished, indicating an adjustment by the biofilm bacteria. In addition, changes in DBCM removal indicated a change in activity related to DBCM. The backwash batch kinetic tests provided a useful tool to evaluate the biofilm’s bacteria. Based on these experiments, the biofilters contained bacteria with similar THM removal kinetics to those seen in previous batch kinetic experiments. Overall, performance or selection does not seem based specifically on nutrients, source water, or source cultures and most likely results from THM product toxicity, and the use of GAC media appeared to offer benefits over anthracite for biofilter stability and long-term performance, although the reasons for this advantage are not apparent based on research to date.  相似文献   

2.
Wahman DG  Henry AE  Katz LE  Speitel GE 《Water research》2006,40(18):3349-3358
Three mixed-culture nitrifier sources degraded low concentrations (25-450 microg/L) of four trihalomethanes (THMs) (trichloromethane (TCM) or chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM) or bromoform) commonly found in treated drinking water. Individual THM rate constants (k1THM) increased with increasing THM bromine-substitution with TBM>DBCM>BDCM>TCM and were comparable to previous studies with the pure culture nitrifier, Nitrosomonas europaea. A decrease in temperature resulted in a decrease in both ammonia and THM degradation rates with ammonia rates affected to a greater extent than THM degradation rates. The significant effect of temperature indicates that seasonal variations in water temperature should be a consideration for technology implementation. Product toxicity, measured by transformation capacity (T(c)), was similar to that observed with N. europaea. Because both rate constants and product toxicities increase with increasing THM bromine-substitution, a water's THM speciation is an important consideration for process implementation during drinking water treatment. Even though a given water is kinetically favored, the resulting THM product toxicity may not allow stable treatment process performance.  相似文献   

3.
Hamidin N  Yu QJ  Connell DW 《Water research》2008,42(13):3263-3274
The presence of chlorinated disinfection by-products (DBPs) in drinking water is a public health issue, due to their possible adverse health effects on humans. To gauge the risk of chlorinated DBPs on human health, a risk assessment of chloroform (trichloromethane (TCM)), bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (tribromomethane (TBM)), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in drinking water was carried out using probabilistic techniques. Literature data on exposure concentrations from more than 15 different countries and adverse health effects on test animals as well as human epidemiological studies were used. The risk assessment showed no overlap between the highest human exposure dose (EXP(D)) and the lowest human equivalent dose (HED) from animal test data, for TCM, BDCM, DBCM, TBM, DCAA and TCAA. All the HED values were approximately 10(4)-10(5) times higher than the 95th percentiles of EXP(D). However, from the human epidemiology data, there was a positive overlap between the highest EXP(D) and the lifetime average daily doses (LADD(H)) for TCM, BDCM, DCAA and TCAA. This suggests that there are possible adverse health risks such as a small increased incidence of cancers in males and developmental effects on infants. However, the epidemiological data comprised several risk factors and exposure classification levels which may affect the overall results.  相似文献   

4.
Chlorination for drinking water can form brominated trihalomethanes (THMs) in the presence of bromide ions. Recent studies have reported that bromodichloromethane (BDCM) has a stronger association with stillbirths and neural tube defects than other THMs species. In this paper, the results of an experimental investigation into the factors forming THMs in the presence of bromide ions are presented. The experiments were conducted using synthetic water samples with different characteristics (e.g., pH, temperature, dissolve organic content). Different combinations of these characteristics were considered in the experimental program. The results showed that increased bromide ion concentrations led to increases in the formation of total THMs, with higher BDCM and dibromochloromethane (DBCM), and lower chloroform formation. By increasing the pH from 6 to 8.5, increased chloroform and decreased BDCM and DBCM formation were observed. Higher bromide ions to chlorine ratios increased BDCM and DBCM and decreased chloroform formation, while higher temperatures increased BDCM, DBCM and chloroform formation. In most cases, bromoform (CHBr3) concentrations were found to be below the detection limit. Significant factors influencing BDCM formation were identified using a statistical analysis. A model for BDCM formation was estimated from 44 experiments and statistical adequacy was assessed using appropriate diagnostics, including residual plots and an R2 of 0.97. The model was validated using external data from 17 water supply systems in Newfoundland, Canada. The predictive performance of the model was found to be excellent, and the resulting model could be used to predict BDCM formation in drinking water and to perform risk-cost balance analyses for best management practices.  相似文献   

5.
Zhang X  Minear RA 《Water research》2002,36(14):3665-3673
The decomposition of trihaloacetic acids [bromodichloroacetic acid (BDCAA), dibromochloroacetic acid (DBCAA), tribromoacetic acid (TBAA)], and the formation of the corresponding trihalomethanes [bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM)] were studied. Like TBAA, the two mixed chlorobromo-species, BDCAA and DBCAA, were found to decompose to form BDCM and DBCM, respectively, via a decarboxylation pathway. The decomposition of BDCAA, DBCAA and TBAA in water at neutral pH follows a first-order reaction, with rate constants of 0.0011, 0.0062 and 0.040 day(-1) at 23 degrees C, respectively; and 0.000028, 0.00014 and 0.0016 day(-1) at 4 degrees C, respectively. The activation energies for the decomposition reaction of BDCAA, DBCAA and TBAA in water at neutral pH were found to be 35.0, 34.5 and 29.2 kcal/mol, respectively. The effect of pH in the range of 6-9 and the effect of a drinking water matrix on the decomposition of BDCAA, DBCAA, and TBAA in water were found to be insignificant. Measurement and health implications due to decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes were discussed. By applying the technique of quantitative structure-activity relationships (QSAR), the decomposition rate constants of six iodinated trihaloacetic acids were estimated.  相似文献   

6.
A biofilter model called "BIOFILT" was used to simulate the removal of biodegradable organic matter (BOM) in full-scale biofilters subjected to a wide range of operating conditions. Parameters that were varied included BOM composition, water temperature (3.0-22.5 degrees C), and biomass removal during backwashing (0-100%). Results from biofilter simulations suggest a strong dependence of BOM removal on BOM composition. BOM with a greater diffusivity or with faster degradation kinetics was removed to a greater extent and also contributed to shorter biofilter start-up times. In addition, in simulations involving mixtures of BOM (i.e. readily degradable and slowly degradable components), the presence of readily degradable substrate significantly enhanced the removal of slowly degradable material primarily due to the ability to maintain greater biomass levels in the biofilters. Declines in pseudo-steady state BOM removal were observed as temperature was decreased from 22.5 to 3 degrees C and the magnitude of the change was significantly affected by BOM composition. However, significant removals of BOM are possible at low temperatures (3-6 degrees C). Concerning the impact of backwashing on biofilter performance, BOM removal was not affected by backwash resulting in biomass removals of 60% or less. This suggests that periodic backwashing should not significantly impact biofilter performance as observed biomass removals from full-scale biofilters were negligible. In general, the simulation results were in good qualitative and quantitative agreement with experimental results obtained from full-scale biofilters.  相似文献   

7.
Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems.  相似文献   

8.
Cancer risk assessment from trihalomethanes in drinking water   总被引:4,自引:0,他引:4  
This study intends to calculate the lifetime cancer risks resulting from intakes of trihalomethanes (THMs) in drinking water based on the presence of each THM species. The slope factors for each THM species are used, combined with exposure model and Monte Carlo simulations, to calculate the cancer risks with consideration of different exposure routes (oral ingestion, inhalation and dermal absorption). The results revealed that the highest risk comes from the inhalation exposure to chloroform during showers, which also dominates the total risk associated with chloroform exposure. For dichlorobromomethane and chlorodibromomethane, inhalation exposure also plays an important role for total risks; however, contribution from the oral consumption cannot be ignored for these two compounds. Bromoform contributes the least cancer risk among the four THM species, with a risk factor two orders of magnitude smaller than the other three THM species. For all of the four THM species, exposure from dermal absorption is not significant when compared with oral ingestion and inhalation exposures. This study also uses the THMs data collected from Taiwan to calculate the cancer risks associated with THM exposures in different areas of Taiwan. Due to the variations of the THMs compositions, it is observed that higher concentrations of total THMs do not necessarily lead to higher cancer risks. Areas with higher bromide concentration in raw water and often with higher total THM concentration may actually give lower cancer risk if the THMs formed shift to bromoform. However, this also leads to the violation of THM standards since bromoform has much higher molecular weight than chloroform. Based on the results of the cancer risks calculated from each THM species, the regulatory issue of the THMs was also discussed.  相似文献   

9.
变速生物滤池处理城市污水的效能研究   总被引:7,自引:0,他引:7  
对采用酶促填料的变速生物滤池处理城市污水进行了生产性试验研究,考察了水力停留时间(HRT)和温度的影响。结果表明,常温、填料层厚度分别为1.5m和2.0m、填料层HRT分别>3.5h和4.9h、相应的滤池HRT>9.7h时,滤池能有效地去除水中有机物和悬浮物。  相似文献   

10.
Inhalation exposure to THMs from drinking water in south Taiwan   总被引:4,自引:0,他引:4  
Trihalomethanes (THMs) are important disinfection byproducts (DBPs) in drinking water. To understand the magnitude of exposure to THMs for the people in southern Taiwan, models are used to estimate the inhalation exposure associated with drinking water based on raw water quality. Two parts of models are used in this study, one for estimating THM concentration from raw water quality, and one for estimating inhalation exposure to people. Important raw water quality and operational parameters, including TOC, UV254, pH, temperature, chlorine dosage, and water residence time of a major water treatment plant in south Taiwan were collected. An empirical THM formation model was then employed to predict the THM concentration at consumers' dwellings based on the parameters collected. Differences between the predicted results and experimental data were found to be small, indicating that the model is appropriate. The predicted THM concentration distribution was served as input parameters for the exposure models. Three major scenarios associated with probable inhalation exposure of THMs, including shower, pre- and post-cooking activities, and cooking processes, were considered in the exposure models. The model results show that the mean inhalation exposure of THMs for shower, pre- and post-cooking activities, and cooking processes are 26.4, 1.56, 3.29 micrograms/day, respectively. The total inhalation exposure (summation of the three scenarios) was found to be comparable with that for direct ingestion, indicating that inhalation is an important pathway for THM exposure from drinking water.  相似文献   

11.
In Korea, data for multi-route trihalomethane (THM) exposure in households using municipal tap water treated with ozone-chlorine or chlorine are unavailable or very limited. Accordingly, the present study was designed to obtain those data by measurements of the THM concentrations in the tap water and indoor and outdoor air in the two types of households, along with an estimation of THM exposure from water ingestion, showering, and the inhalation of indoor air. Chloroform was the most abundant THM in all three media, yet no bromoform was detected in any sample. Similar to previous findings, the winter chloroform concentration in tap water treated with chlorine (22.1 microg/l, median) was significantly higher than that in the tap water treated with ozone-chlorine (16.8 microg/l, median). However, the summer water chloroform concentrations and summer and winter water concentrations of the other two THMs (bromodichloromethane and dibromochloromethane) exhibited no significant difference between the chlorine and ozone-chlorine-treated water. It was suggested that the effects of the water parameters including biochemical oxygen demand of raw water entering water treatment plants should be considered when evaluating the advantage of ozone-chlorine disinfection for THM formation over chlorine disinfection. The indoor air THM concentration trend was also consistent with the water concentration trend. The indoor to outdoor air concentration ratios were comparable with previous studies. The THM exposure estimates from water ingestion, showering, and the inhalation of apartment indoor air when not in the shower suggested that, for residents living in the surveyed households, their exposure to THMs in the home was mostly associated with their household water uses. The THM exposure estimates from tap water ingestion were similar to those from showering.  相似文献   

12.
Hope CK  Bott TR 《Water research》2004,38(7):1853-1861
Laboratory biofilters (pilot-scale, 20 l and laboratory-scale, 5l) were constructed in order to model the bioaccumulation of manganese (Mn) under flow conditions similar to those occurring in biofilters at groundwater treatment sites. The biofilters were operated as monocultures of Leptothrix discophora, the predominant organism in mature Mn oxidising biofilms. Biologically mediated Mn bioaccumulation was successfully modelled in both filter systems. The data obtained showed that in the small-scale biofilter, the Mn concentrations that gave the highest rate of Mn bioaccumulation, shortest maturation time, highest optical density (biomass) and growth rate were between 2000 and 3000 microg x l(-1). The non-problematic scale-up of the process from the laboratory-scale to the pilot-scale biofilter model suggests that Mn biofilters may be 'seeded' with laboratory grown cultures of L. discophora. By initially operating the biofilter as a re-circulating batch culture, with an initial Mn concentration of approximately 2500 microg x l(-1), it is hoped to reduce the filter maturation time from months to days.  相似文献   

13.
《Soils and Foundations》2019,59(6):2220-2237
The stability of a slope is subjected to thermal (T), hydraulic (H), and mechanical (M) loadings and their coupling effects. Modeling the coupled THM processes that occur in the slope is important for reliably assessing and predicting the slope performance and stability. Therefore, a numerical model, which can consider the full coupling among the thermal (temperature variation), hydraulic (pore water pressure), and mechanical (stress and displacement) processes, is developed in this study. The developed model is employed to analyze slope stability, and the simulated results are seen to coincide well with the results obtained by traditional limit equilibrium calculation. A comparison of the results verifies the validity of the developed model for slope stability analyses under THM coupled effects. Furthermore, the capability of the developed THM model for predicting the slope performance is validated through comparisons of three case studies in terms of both laboratory experiments and numerical simulations. A favorable agreement between the modeling results and the compared data confirms the capability of the developed model to accurately describe the behavior of a slope affected by THM coupled processes. The modeling results can also contribute to a better understanding of slope failure induced by the THM couplings.  相似文献   

14.
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.  相似文献   

15.
以水体中常见的污染物地乐酚(Dinoseb)为研究对象,分析了水中4种不同离子(Br-、NH4+、NO3-、NO2-)背景浓度下Dinoseb氯化动力学及生成消毒副产物(DBPs)的情况。结果表明,4种离子对Dinoseb氯化反应的影响顺序为:Br->NH4+>NO2->NO3-。产生的消毒副产物主要有三氯甲烷(CF)、三氯硝基甲烷(TCNM)、二氯乙腈(DCAN)、三氯丙酮(TCP)、二氯一溴甲烷(DCBM)等,其中TCNM浓度最高,Dinoseb是TCNM的典型前体物。当水中有Br-存在时,Dinoseb降解反应非常复杂,降解速率不符合拟一级反应规律,还会产生大量溴代THMs,如二氯一溴甲烷(DCBM)、一氯二溴甲烷(DBCM)、三溴甲烷(TBM)等,它们的浓度均随着Br-/Cl2值的增加而迅速增加,浓度高低顺序为:DCBM>DBCM>TBM>CF。在相同p H值下,Dinoseb的氯化降解速率随着Br-浓度的增大而增加;在相同Br-浓度下,pH值越低,Dinoseb的氯化反应速率越快。与Br-相比,pH值是更重要的氯化速率影响因素。当水体中有NH4+存在时,TCNM产率会提高较多;NO3-对Dinoseb的氯化反应有一定的抑制作用,各DBPs浓度都有降低;NO2-可以被水中的次氯酸氧化成NO3-,消耗水中部分次氯酸,DBPs浓度总体都会降低。  相似文献   

16.
Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (±25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac.  相似文献   

17.
Chow AT  Guo F  Gao S  Breuer R  Dahlgren RA 《Water research》2005,39(7):1255-1264
Filters with a pore size of 0.45 microm have been arbitrarily used for isolating dissolved organic carbon (DOC) in natural waters. This operationally defined DOC fraction often contains heterogeneous organic carbon compounds that may lead to inconsistent results when evaluating trihalomethane formation potential (THMFP). A finer pore size filter provides more homogeneous DOC properties and enables a better characterization of organic matter. In this study, we examined the effects of filter pore size (1.2, 0.45, 0.1 and 0.025 microm) on characterizing total organic carbon, ultra-violet absorbance at 254 nm (UV(254)) and THMFP of water extracts from a mineral and organic soil in the Sacramento-San Joaquin Delta, California. Results showed that the majority of water extractable organic carbon (WEOC) from these soils was smaller than 0.025 microm, 85% and 57% in organic and mineral soils, respectively. A high proportion of colloidal organic carbon (COC) in mineral soil extracts caused water turbidity and resulted in an abnormally high UV(254) in 1.2 and 0.45 microm filtrates. The reactivity of organic carbon fractions in forming THM was similar for the two soils, except that COC from the mineral soil was about half that of others. To obtain a more homogeneous solution for characterizing THM precursors, we recommend a 0.1 microm or smaller pore-size filter, especially for samples with high colloid concentrations.  相似文献   

18.
Wood bark, used as biofilter material, gives less back pressure than fibre peat or household compost and is therefore cheaper in variable costs than the other materials. With a filter bed height of 0.9 m and with a surface load of 65 m3 m−2 h−1, 10 ppm hydrogen sulphide is efficiently eliminated from odorous air by a wood bark biofilter. The most important parameter for a good functioning of the filter is the water content of the filter material. The optimum for wood bark is about 65%. Unnecessarily high back pressures are recorded during sprinkling water on top of the filter. Therefore, it seems preferable to condition the relative humidity of air entering the filter. If absorption and adsorption were the only factors in the biofilter mechanism, hydrogen sulphide would, in the given circumstances, break through after about 7 h. It is shown that hydrogen sulphide is oxidized to sulphate. According to literature data, chemical oxidation is too slow and therefore hydrogen sulphide oxidation in the biofilter is attributed to microbiological action.  相似文献   

19.
Sohn J  Amy G  Cho J  Lee Y  Yoon Y 《Water research》2004,38(10):2461-2478
Comprehensive disinfectant decay and disinfection by-product formation (D/DBP) models in chlorination and ozonation were developed to apply to various types of raw and treated waters. Comparison of several types of models, such as empirical power function models and empirical kinetic models, was provided in order to choose more robust and accurate models for the D/DBP simulations. An empirical power function model based on dissolved organic carbon and other parameters (Empirically based models for predicting chlorination and ozonation by-products: haloacetic acids, chloral hydrate, and bromate, EPA Report CX 819579, 1998) showed a strong correlation between measured and predicted trihalomethane (THM) and haloacetic acid (HAA) formation for raw waters. Internal evaluation of kinetic-based models showed good predictions for chlorine decay and THM/HAA formation, but no significant improvements were observed compared to the empirical power function model simulations. In addition, several empirical models for predicting ozone decay and bromate (ozonation disinfection by-product) formation were also evaluated and/or developed. Several attempts to develop kinetic-based and alternative models were made: (i) a two-stage model (two separate decay models) was adapted to ozone decay and (ii) an ozone demand model was developed for bromate formation. Generally, internal evaluation of kinetic-based models for ozone decay showed significant improvements, but no significant improvements for the simulation of bromate formation were observed compared to the empirical power function model simulations. Additional efforts were performed to reduce the gaps between specific models and their actual application. For instance, temperature effects and configuration of ozone contactors were considered in actual application.  相似文献   

20.
A reactive transport model was developed to simultaneously predict Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of natural water. A mechanistic model previously established to predict bromate formation in organic-free synthetic waters was coupled with an empirical ozone decay model and a one-dimensional axial dispersion reactor (ADR) model to represent the performance of a lab-scale flow-through ozone bubble-diffuser contactor. Dissolved ozone concentration, bromate concentration (in flow-through experiments only), hydroxyl radical exposure and C. parvum oocyst survival were measured in batch and flow-through experiments performed with filtered Ohio River water. The model successfully represented ozone concentration and C. parvum oocyst survival ratio in the flow-through reactor using parameters independently determined from batch and semi-batch experiments. Discrepancies between model prediction and experimental data for hydroxyl radical concentration and bromate formation were attributed to unaccounted for reactions, particularly those involving natural organic matter, hydrogen peroxide and carbonate radicals. Model simulations including some of these reactions resulted in closer agreement between predictions and experimental observations for bromate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号