首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Behavior of N atoms after thermal nitridation of Si1 − xGex (100) surface in NH3 atmosphere at 400 °C was investigated. X-ray photoelectron spectroscopy (XPS) results show that N atomic amount after nitridation tends to increase with increasing Ge fraction, and amount of N atoms bonded with Ge atoms decreases by heat treatment in H2 at 400 °C. For nitrided Si0.3Ge0.7(100), the bonding between N and Si atoms forms Si3N4 structure whose amount is larger than that for nitrided Si(100). Angle-resolved XPS measurements show that there are N atoms not only at the outermost surface but also beneath surface especially in a deeper region around a few atomic layers for the nitrided Si(100), Si0.3Ge0.7(100) and Ge(100). From these results, it is suggested that penetration of N atoms through around a few atomic layers for Si, Si0.3Ge0.7 and Ge occurs during nitridation, and the N atoms for the nitrided Si0.3Ge0.7(100) dominantly form a Si3N4 structure which stably remains even during heat treatment in H2 at 400 °C.  相似文献   

2.
Phases in copper-gallium-metal-sulfide films (metal=titanium, iron, or tin)   总被引:1,自引:0,他引:1  
The incorporation of metal impurities M (M = Ti, Fe, or Sn) into CuGaS2 films is investigated experimentally as a function of impurity concentration. Films are synthesized by thermal co-evaporation of the elements onto glass/Mo substrates heated to 400 °C-570 °C. The compositions of the resulting films are measured by energy-dispersive X-ray spectroscopy and the structures of the present phases are studied by X-ray diffraction. The formation of Cu-M-S ternary phases is observed in a wide range of conditions. Films of Cu-Ga-Ti-S, synthesized at 500 °C, show the presence of a cubic modification of CuGaS2 and Cu4TiS4. Alloying of CuGaS2 and tetragonal Cu2SnS3 is observed for substrate temperatures of 450 °C. A miscibility gap opens at 500 °C and above with separate Sn-rich and Ga-rich phases. Similarly, alloys of CuFeS2 and CuGaS2 are only found in Cu-Ga-Fe-S films synthesized at lower substrate temperature (400 °C), whereas at 500 °C a miscibility gap opens leading to separate Fe-rich and Ga-rich phases.  相似文献   

3.
The main aim of this study was to simultaneously increase tensile strength and ductility of AZ31/AZ91 hybrid magnesium alloy with Si3N4 nanoparticles. AZ31/AZ91 hybrid alloy nanocomposite containing Si3N4 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable Si3N4 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 13% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy (in tension), the nanocomposite simultaneously exhibited higher yield strength, ultimate strength, failure strain and work of fracture (+12%, +5%, +64% and +71%, respectively). Compared to the monolithic hybrid alloy (in compression), the nanocomposite exhibited higher yield strength and ultimate strength, lower failure strain and higher work of fracture (+35%, +4%, −6% and +6%, respectively). The beneficial effects of Si3N4 nanoparticle addition on the enhancement of tensile and compressive properties of AZ31/AZ91 hybrid alloy are investigated in this paper.  相似文献   

4.
The processes of silicon nanocrystals (Si-NCs) growth on both SiO2 and Si3N4 substrates by low pressure chemical vapor deposition have been systematically investigated. A two-step process was adopted for Si-NCs growth: nucleation at a high temperature (580-600 °C) and growth at a low temperature (550 °C). By adjusting the pre-deposition waiting time and deposition time, the density, size and uniformity can be effectively controlled. Compared to the growth of Si-NCs on SiO2, the coalescence speed of Si-NCs on Si3N4 is faster. Uniform Si-NCs with a high density of 1.02 × 1012 cm− 2 and 1.14 × 1012 cm− 2 have been obtained on SiO2 and Si3N4, respectively. Finally, a Si-NCs-based memory structure with a 2.1 V memory window was demonstrated.  相似文献   

5.
Superhard nanocomposite coatings of TiAlN/Si3N4 with varying silicon contents were synthesized using reactive direct current (DC) unbalanced magnetron sputtering. The Si and TiAl targets were sputtered using an asymmetric bipolar-pulsed DC power supply and a DC power supply, respectively, in Ar+N2 plasma. The structural and mechanical properties of the coatings were characterized using X-ray diffraction (XRD) and nanoindentation techniques, respectively. The elemental composition of the TiAlN/Si3N4 nanocomposite coatings was determined using energy-dispersive X-ray analysis and the bonding structure was characterized by X-ray photoelectron spectroscopy. The surface morphology of the coatings was studied using atomic force microscopy. The XRD data showed that the nanocomposite coatings exhibited (1 1 1) and (2 0 0) reflections of cubic TiAlN phase. The broadening of the diffraction peaks with an increase in the silicon content in the nanocomposite coatings, suggested a decrease in the average crystallite size. The TiAlN/Si3N4 nanocomposite coatings exhibited a maximum hardness of 43 GPa and an elastic modulus of 350 GPa at a silicon concentration of approximately 11 at%. The hardness and the elastic modulus of the nanocomposite coatings decreased significantly at higher silicon contents. Micro-Raman spectroscopy was used to characterize the structural changes as a result of heating of the nanocomposite coatings in air (400-850 °C) and in vacuum (900 °C). The Raman data of the nanocomposite coatings annealed in air and vacuum showed better thermal stability as compared to that of the TiAlN coatings. Similarly, the nanocomposite coatings deposited on mild steel substrates exhibited improved corrosion resistance.  相似文献   

6.
Zirconium phosphate (ZrP2O7) bonded silicon nitride (Si3N4) porous ceramics were prepared using starch powder as the pore forming agent and pressureless sintering technique. The obtained results show that the porosity of the sintered starch processed 25 wt.% ZrP2O7 bonded Si3N4 porous ceramics is 36-62.3%. All the samples exhibit surprisingly low linear shrinkage. The pores are formed by the continuous reaction of ZrP2O7 at ~ 250 °C and burnout of starch at ~ 550 °C, during which a large amount of pores with pore sizes of less than 0.5 μm and ~ 10 μm are formed.  相似文献   

7.
In this work, a possible way to enhance the epitaxial growth of metastable, tensile strained SixC1  x layers by the addition of germanium is demonstrated. During ultra-high vacuum chemical vapor deposition growth, the co-mixing of germane to the SixC1  x precursors was found to enhance the growth rate by a factor of ~ 3 compared to the growth of pure SixC1  x. Furthermore, an increase of the amount of substitutional incorporated carbon has been observed. Selective SixGeyC1  x − y deposition processes utilizing a cyclic deposition were developed to integrate epitaxial tensile strained layers into source and drain areas of n-channel transistors.  相似文献   

8.
BaTiO3-SrTiO3 (BST) thick films (~ 250-390 μm) with layered structures were fabricated by tape-casting and lamination process. Layered composites with various Ba/Sr ratios were obtained by lamination of BaTiO3 (BT) and SrTiO3 (ST) tapes in different spatial configurations (2-2). As-prepared BST ceramics showed much improved sinterability over the laminates of pure BT or pure ST tapes. Dielectric properties of materials were measured in the temperature range of 25 °C to 200 °C. The method of utilizing of layered structures offered flexibility to maximize the energy storage capability at specific operating conditions: (temperature and electric field) by tailoring the dielectric properties through varying the spatial configurations of BT and ST films.  相似文献   

9.
Conductive cadmium stannate (Cd2SnO4,) films were grown by a simple spray-pyrolysis technique using aerosols ultrasonically generated from solutions containing Cd(thd)2(TMEDA) and nBu2Sn(AcAc)2, and monoglyme as solvent (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate, TMEDA = N,N,N′,N′-tetramethylethylenediamine, AcAc = acethylacetonate). The overall film growing procedure was carried out at or below 400 °C thus allowing low-melting temperature materials like glass to be used as film substrates. Typical resistivity values of Cd2SnO4 films were found to be ∼ 2 · 10 −3 Ωcm. The films exhibit excellent electrochemical activity with comparable or higher electron transfer rates than cadmium stannate films obtained via sol-gel methods at high annealing temperature.  相似文献   

10.
Due to the high sensitivity of Ni-Ti films to environmental changes, e.g. thermal, and/or to stress, they are ideal materials for applications on micro-sensors.It was aimed to obtain Ni-Ti films exhibiting the beginning of the B2 ⇔ R-phase transformation between room temperature (RT) and 0 °C. Thus, films with a slightly Ni-rich composition were prepared by sputtering, without intentional heating of the substrate. The Ni-Ti films were deposited on an Si3N4 intermediate layer previously deposited on naturally oxidized Si(100). The crystallization behaviour of the samples (at a constant temperature of 430 °C) was studied by X-ray diffraction in grazing incidence geometry off-plane (GIXD) at a synchrotron-radiation beamline. The GIXD patterns obtained during the annealing process of the Ni-Ti polycrystalline films revealed mainly an austenitic structure (B2 phase) and the precipitation of Ni4Ti3. The results have also shown that the presence of an intermediate layer of Si3N4 enhances the crystallization process of the Ni-Ti sputtered films when compared to the films deposited directly on single-crystal Si (with native oxide).The phase transformation behaviour of the Ni-Ti film on Si3N4 was evaluated by XRD in off-plane Bragg-Brentano geometry during cooling (RT → −40 °C) and heating (−40 °C → RT). It has been observed that a high fraction of the Ni-Ti film is already transformed to R-phase at 9 °C (austenitic at RT), as well as a very small temperature hysteresis for the B2 ⇔ R-phase transformation.After the characterization described above, the film was removed from the substrate. The free-standing film showed a pronounced “two-way” shape memory effect (SME). In the austenitic state the film presents a flat shape. During cooling, by reducing its distance from ice cubes (i.e., decreasing the surrounding temperature), the film starts bending exhibiting a final curled shape (yet without touching the ice). On heating it recovers its flat shape. The authors attribute the nature of this “two-way” SME to the Ni4Ti3 precipitates that formed during the heat treatment.  相似文献   

11.
Lead-free polycrystalline BiFeO3 (BFO) thin films were developed using a chemical solution deposition method to deposit the films and the multi-mode 2.45 GHz microwave furnace to optimize the annealing condition of the films. Phase-pure BFO films were obtained at 500 °C-600 °C for 1-5 min with a heating rate of 10 °C/min. The film by microwave annealing (MW) at 550 °C for 5 min exhibited a (012)-preferred orientation with a dense morphology of grain size ~ 294 nm. Its dielectric constant of 96.2, low leakage current density of 2.466 × 10− 6 A/cm2, polarization (2Pr) and coercive field (2Ec) of 0.931 μC/cm2 and 57.37 kV/cm, respectively, were improved compared to those by conventional annealing (CA) at the same annealing conditions.  相似文献   

12.
A novel composite filler alloy was developed by introducing Si3N4p (p = particles) into Ag-Cu-Ti filler alloy. The brazing of Si3N4 ceramics and TiAl intermetallics was carried out using this composite filler alloy. The typical interfacial microstructure of brazed joints was: TiAl/AlCu2Ti reaction layer/Ag(s,s) + Al4Cu9 + Ti5Si3p + TiNp/TiN + Ti5Si3 reaction layer/Si3N4. Effects of Si3N4p content in composite filler alloy on the interfacial microstructure and joining properties were investigated. The distribution of Ti5Si3p and TiNp compounds in Ag-based solid solution led to the decrease of the mismatch of the coefficient of thermal expansion (CTE) and the Young's modulus between Si3N4 and TiAl substrate. The maximum shear strength of 115 MPa was obtained when 3 wt.% Si3N4p was added in the composite filler alloy. The fracture analysis showed that the addition of Si3N4p could improve the mechanical properties of the joint.  相似文献   

13.
High-Tc screen-printed Ho-Ba-Cu-O films were prepared on YSZ substrates by a melt processing method. The films were fired at Ts = 1000-1050 °C for 5 min and cooled to 450 °C by two steps in flowing O2. The maximum critical current density Jc (77 K, 0 T) of 2.0 × 103 A cm− 2 was only attained under much limited firing conditions; Ts = 1020 °C and cooled to 800 °C at a cooling rate of 400 °C h− 1.  相似文献   

14.
Transparent semiconductor thin films of Zn1 − xTixO (0 ≦ x ≦ 0.12) were deposited on alkali-free glass substrates by the sol-gel method. The effects of Ti addition on the crystallization, microstructure, optical properties and resistivity of ZnO thin films were investigated. The as-coated films were preheated at 300 °C, and then annealed at 500 °C in air ambiance. X-ray diffraction results showed all polycrystalline Zn1  xTixO thin films with preferred orientation along the (002) plane. Ti incorporated within the ZnO thin films not only decreased surface roughness but also increased optical transmittance and electrical resistivity. In the present study, the Zn0.88Ti0.12O film exhibited the best properties, namely an average transmittance of 91.0% (an increase of ~ 12% over the pure ZnO film) and an RMS roughness value of 1.04 nm.  相似文献   

15.
Transparent conducting Nb-doped anatase TiO2 (TNO) epitaxial films were sputtered from TiO2-, Ti2O3-, and Ti-based targets at various oxygen partial pressures (Po2). Using the TiO2- and Ti2O3-based targets, highly conductive films showing a resistivity (ρ) of ~ 3 × 10− 4 Ω cm could be formed without postdeposition treatment. In the case of the TNO films formed from the Ti-based target, reductive annealing had to be carried out at a temperature of 600 °C to achieve similar resistivity values. Thus, the use of oxide targets is preferable to obtain as-grown transparent conducting TNO films. In particular, the Ti2O3-based target is practically advantageous, because it offers a wide range of optimal Po2 values at which ρ values of the order of 10− 4 Ω cm are achievable.  相似文献   

16.
Atomic Vapor Deposition and Atomic Layer Deposition techniques were applied for the depositions of Ta2O5, Ti-Ta-O, Sr-Ta-O and Nb-Ta-O oxide films for Metal-Insulator-Metal (MIM) capacitors used in back-end of line for Radio Frequency applications. Structural and electrical properties were studied. Films, deposited on the TiN bottom electrodes, in the temperature range of 225-400 °C, were amorphous, whereas the post deposition annealing at 600 °C resulted in the crystallization of Nb-Ta-O films. Electrical properties of MIM structures, investigated after sputtering Au top electrodes, revealed that the main characteristics were different for each oxide. On one hand, Ti-Ta-O based MIM capacitors possessed the highest dielectric constant (50), but the leakages currents were also the highest (~ 10− 5 A/cm2 at − 2 V). On the other hand, Sr-Ta-O showed the lowest leakage current densities (~ 10− 9 A/cm2 at − 2 V) as well as the smallest capacitance-voltage nonlinearity coefficients (40 ppm/V2), but the dielectric constant was the smallest (20). The highest nonlinearity coefficients (290 ppm/V2) were observed for Nb-Ta-O based MIM capacitors, although relatively high dielectric constant (40) and low leakage currents (~ 10− 7 A/cm2 at − 2 V) were measured. Temperature dependent leakage-voltage measurements revealed that only Sr-Ta-O showed no dependence of leakage current as a function of the measurement temperature.  相似文献   

17.
Room temperature magnetron sputtering is used to deposit SiO2 and Si3N4 encapsulation layers on top of back gated graphene transistors, which are fabricated with CVD grown graphene transferred onto SiO2 and Si3N4 substrates. Raman spectroscopy with 514 nm laser excitation was performed on bare and encapsulated devices. A small increase in D peak of the encapsulated spectrum indicates minimal increase in defect density for both SiO2 and Si3N4 deposition. Graphene on Si3N4 exhibits an average mobility of ~ 4000 cm2/V.s at a carrier density of 1012 cm− 2 and up to 80% mobility is retained upon encapsulation with Si3N4, while on SiO2 the average mobility is ~ 2000 cm2/V.s with mobility retention of up to 55% with SiO2 encapsulation.  相似文献   

18.
Multilayer Cr(1 − x)AlxN films with a total thickness of 2 μm were deposited on high-speed steel by medium frequency magnetron sputtering from Cr and Al-Cr (70 at.% Al) targets. The samples were annealed in air at 400 °C, 600 °C, 800 °C and 1000 °C for 1 hour. Films were characterized by cross-sectional scanning electron microscopy and X-ray diffraction analysis. The grain size of the as-deposited multilayer films is about 10 nm, increasing with the annealing temperature up to 100 nm. Interfacial reactions have clearly changed at elevated annealing temperatures. As-deposited films' hardness measured by nanoindentation is 22.6 GPa, which increases to 26.7 GPa when the annealing temperature goes up to 400 and 600 °C, but hardness decreases to 21.2 GPa with further annealing temperature increase from 600 to 1000 °C. The multilayer film adhesion was measured by means of the scratch test combined with acoustic emission for detecting the fracture load. The critical normal load decreased from 49.7 N for the as-deposited films to 21.2 N for the films annealed at 1000 °C.  相似文献   

19.
Aluminum rich oxynitride thin films were prepared using pulsed direct current (DC) magnetron sputtering from an Al95.5Cr2.5Si2 (at.%) target. Two series of films were deposited at 400 °C and 650 °C by changing the O2/(O2 + N2) ratio in the reactive gas from 0% (pure nitrides) to 100% (pure oxides). The films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and nanoindentation. The results showed the existence of three different regions of microstructure and properties with respect to the oxygen concentration. For the samples deposited at 650 °C in the nitrogen rich region (O2/(O2 + N2) ≤ 0.08), the formation of the h-AlN (002) and Al-N bond were confirmed by XRD and XPS measurements. The hardness of the films was around 30 GPa. In the intermediate region (0.08 ≤ O2/(O2 + N2) ≤ 0.24), the presence of an amorphous structure and the shifting of the binding energies to lower values corresponding to non-stoichiometric compounds were observed and the hardness decreased to 12 GPa. The lowering of mechanical properties was attributed to the transition of the clean target to the reacted target under non-steady state deposition conditions. In the oxygen rich region (0.24 ≤ (O2/(O2 + N2) ≤ 1), the existence of α-Al2O3-(113), α-Al2O3-(116) and Al-O bonds confirmed the domination of this phase in this region of deposition and the hardness increased again to 30-35 GPa. Films deposited at 400 °C showed the same behavior except in the oxygen rich region, where hardness remains low at about 12-14 GPa.  相似文献   

20.
The change of strain in Si0.7Ge0.3 films was investigated with medium energy ion scattering (MEIS). Si was removed in the films by selective oxidation at 800 °C, resulting in the formation of a Ge pile-up layer on the surface. The relaxation and the thickness of the pile-up layer were closely related to the oxidation time. MEIS data demonstrated that relaxation of the Ge layer in the depth direction occurred partially, and that the rates of relaxation decreased with depth. In addition, the rate of relaxation increased with the oxidation time. Lastly, the relaxation of the Ge layer affected the strain of the remaining Si0.7Ge0.3 substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号