首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ochratoxin A is a well-known mycotoxin produced by species of the genera Penicillium and Aspergillus. OTA-producing species from A. section Nigri are considered the source of OTA detected in grapes, dried vine fruits and wines. Other fungi present in grapes during their maturation can grow and interact with OTA-producing Aspergillus species and affect OTA production. In this study seven fungi (Alternaria alternata, Cladosporium herbarum, Eurotium amstelodami, Trichoderma harzianum, Penicillium decumbens, P. janthinellum and Candida sp.) disolated from grapes and dried vine fruits were grown in SNM medium paired with OTA-positive A. carbonarius at two temperatures (20 and 30 degrees C) and at two water activities (0.92 and 0.97). OTA production was tested after 5, 7, 10, 14 and 18 days of incubation, at four distances (1, 2, 3 and 4 cm) from A. carbonarius inoculation point in the inter-colony axis. At 0.92 a(w) OTA production was almost negligible. At 0.97 a(w) and 30 degrees C OTA accumulation was reduced when A. carbonarius was grown in paired cultures, particularly with A. alternata, C. herbarum, P. decumbens and P. janthinellum. At 0.97 a(w) and 20 degrees C, there was no clear effect of the interacting species on OTA accumulation; in general E. amstelodami and Candida sp. seemed to stimulate OTA production, whereas T. harzianum and P. decumbens reduced it. Competing mycoflora acted as an additional control factor against OTA accumulation at 30 degrees C; but at 20 degrees C, where OTA production is optimal, this did not happen. Thus maintaining the temperature of grapes at or above 30 degrees C during dehydration may provide some control against OTA accumulation in grapes.  相似文献   

2.
The aim of this study was to assess the colonizing capability and OTA production of different populations of Aspergillus section Nigri spp. in grapes, as affected by the interactions with other fungi, during a simulated in vitro sun-drying. Mature white grapes were divided into two lots of healthy and artificially injured grapes and inoculated with A. section Nigri spp. (A. carbonarius OTA producer, A. niger aggregate OTA producer, A. niger aggregate OTA non-producer), Eurotium amstelodami and Penicillium janthinellum, in different combinations. The drying process was simulated adjusting water activity firstly at 0.98 a(w) and gradually decreasing it to 0.76 a(w) for a total of 20 days. Colonizing grape percentages were recorded after 5, 10, 15 and 20 days of dehydration and OTA content was measured after 5, 7, 10, 12, 15, 17 and 20 days. Colonization of grapes increased with time in all treatments. A. niger aggregate OTA-positive showed the highest colonization percentage, followed by A. carbonarius, and finally their mixed inoculum. When the two OTA-producing strains were combined, addition of any other microorganism increased the percentage of infection by A. section Nigri. A. carbonarius was the highest OTA producer in pure culture, followed by A. niger aggregate OTA-positive. In general, when competing fungi were added to A. carbonarius inoculum, the OTA content was reduced. E. amstelodami was the only competing fungus which increased OTA accumulation. The sun-drying process may be conducive to OTA accumulation in dried grapes. The complex fungal interactions which may take place during this process, may act as an additional control factor, given that the higher presence of A. niger aggregate OTA-negative inhibits OTA accumulation by OTA producing species.  相似文献   

3.
A study was carried out to investigate fungi present on grapes grown in Italy. Aspergillus and Penicillium spp. isolates were identified and studied in vitro, and their ability to produce ochratoxin A (OA) was investigated. The survey involved nine vineyards, three located in northern Italy and six located in southern Italy. In 1999 and 2000, bunches of grapes at different growth stages were collected from all nine vineyards, and berry samples were placed in moist chambers and incubated. The resultant fungal colonies were then transferred to petri dishes containing Czapek yeast agar and incubated at 25 degrees C for 7 days; the fungal isolates were identified and then cultivated in liquid Czapek yeast medium and evaluated for their ability to produce OA. During the survey, 508 isolates were collected, with 477 belonging to Aspergillus spp. and 31 belonging to Penicillium spp. Among the aspergilli, species of the Fumigati, Circumdati, and Nigri sections were identified, with species of the Nigri section (464 isolates) largely predominating; for species of the Nigri section, 108 isolates were uniseriate, 270 were biseriate, and 86 were identified as Aspergillus carbonarius. Black aspergilli isolated over the 2 years of the study showed a very similar pattern. On average, the biseriates represented about 60% of the isolates collected in both years and were followed by uniseriates (21%) and A. carbonarius (19%). The most toxigenic strains proved to be those of A. carbonarius; about 60% of these isolates were OA producers and produced the highest levels of OA. A. carbonarius was more frequent in the south, but in both areas the percentages of OA-producing isolates remained the same.  相似文献   

4.
The occurrence of Aspergillus section Nigri on certain varieties of grapes used for dried vine fruit (and especially on Sultana), was surveyed extensively during three harvest seasons (1998, 1999 and 2000). Members of Aspergillus section Nigri were enumerated and identified in a total of 806 samples comprising both fresh fruit as well as partially-dried and fully-dried grapes. Aspergillus aculeatus , A. carbonarius and A. niger were commonly isolated. Of those three species, A. niger showed the highest optimum temperature for growth, as well as highest thermal tolerance. That combination of properties probably accounts for the occurrence of A. niger in over 80% of fruit samples in all three seasons. A. carbonarius was also prevalent on fruit surveyed for fungal rots. Severity of infection with this group of fungi was highest in the seasons when grape berries were rain-damaged. Typically, the Aspergillus count increased during the initial stages of drying. Growth of these moulds while grapes are either still on the vine or during drying carries important implications for human consumption due to the potential for certain strains of these fungi to produce ochratoxin A. Fungal cultures on coconut cream agar plates were screened for production of ochratoxin A via fluorescence emission under UV light. Such fluorescence was observed in all isolates of A. carbonarius , but was not observed in any isolates of either A. aculeatus or A. niger .  相似文献   

5.
The objectives of this study were to determine the effect of water activity, temperature, and their interactions on a) mycelial growth rate and b) the lag phase prior to grow of seven isolates of Aspergillus section Nigri isolated from peanuts, maize kernels, dried grapes and coffee cherries from Argentina. Three Aspergillus niger, three A. awamori and one A. carbonarius isolates examined showed optimum a(W) level for growth at 0.97 with optimal temperature of 30 degrees C. for most of the isolates and 25 degrees C for only one (A. awamori RCP176). Minimal a(W) for growth was 0.85 at the highest temperature tested. Overall growth was reduced up to 50% at 0.93 a(W). Growth was also to a large extend inhibited at 0.85 a(W) for most isolates even after 21 days of incubation at temperatures lower than 30 degrees C. The analysis of variance of the effect of single (isolate, a(W) and temperature), two- and three-way interaction showed that all factors alone and all interactions were statistically significant (P<0.001) in relation to growth rates and lag phase for A. niger, A. awamori and A. carbonarius isolates. These data are relevant since these species are isolated in high frequency on numerous substrates for human and animal consumption in Argentina.  相似文献   

6.
The evolution of contamination with Aspergillus section Nigri and ochratoxin A occurrence was evaluated in four vineyards located at Mendoza province, Argentina during 2003-2004. The survey included two grape varieties, one of late maturation (Bonarda) and the other of early maturation (Tempranillo). The vineyards were set under non-organic and organic cropping systems. Bunches of grapes at different growth stages were collected, and berries (50 by sample) were plated on Petri dishes containing Dichloran 18% Glycerol Agar (DG18) and Dichloran Rose Bengal Chloramphenicol Agar (DRBC) media. After an incubation period of 7 days at 25 degrees C+/-1 degrees C, the mycoflora belonging to Aspergillus section Nigri was identified. The ability to produce ochratoxin A (OTA) by the potential ochratoxigenic species was evaluated on YES (2% yeast extract, 15% sucrose) medium. The cultures were incubated at 30 degrees C+/-1 degrees C for 10 days in darkness. The OTA content of the grapes was determined by HPLC. Through the different growth stages, from setting to harvest, grape contamination by the Aspergillus species, section Nigri increased. The main species isolated belonged to the A. niger aggregate. From 246 strains evaluated 24% was ochratoxigenic. OTA was not detected in grapes during the survey.  相似文献   

7.
The ochratoxigenic mycobiota of grapes belonging to representative wine regions located along the Mediterranean coast of Spain at different developmental stages was identified. During the development of the berries, the occurrence of Aspergillus spp. increased while the percentage of berries contaminated by non-ochratoxin A (OTA) producing species such as Alternaria spp. and Cladosporium spp. decreased. Penicillium verrucosum, the only confirmed Penicillium spp. that is able to produce OTA, was not isolated. The contamination by OTA-producing species comes from the surface of the berries and not from the inner fruit. Black aspergilli were predominant among the different Aspergillus spp. isolated. All the Aspergillus carbonarius isolates were able to produce OTA at different concentrations. None of the isolates belonging to Aspergillus niger aggregate and to Aspergillus japonicus var. aculeatus were able to produce OTA. These results are a strong evidence of the contribution of A. carbonarius in the OTA contamination in wine grapes, mainly at the last developmental stages of the berries.  相似文献   

8.
Fungi belonging to Aspergillus section Nigri occur frequently and in high populations on grapes. Species within this section include Aspergillus niger, A. tubingensis, and A. carbonarius, and they are potential sources for mycotoxins including ochratoxin A and fumonisin B(2) (FB(2)) in grapes and grape products. Aspergillus section Nigri strains were isolated from California raisins to examine the frequency and extent of FB(2) production. Of 392 strains isolated, 197 strains were identified as A. niger, 131 of which produced FB(2). These strains produced from 1.2 to 27 μg/ml FB(2) in culture. PCR amplification of fum1 and fum19 gene fragments showed that all FB(2)-producing strains and nearly all nonproducing strains of A. niger contain these genes. An additional 175 strains were identified as A. tubingensis, none of which produced FB(2). PCR with fum1 and fum19 primers amplified gene fragments of 14 and 25% of A. tubingensis strains, respectively, suggesting that putative orthologs of A. niger fumonisin biosynthetic genes might occur in A. tubingensis. These results indicate that FB(2) production is common among field isolates of A. niger and suggest that the potential for FB(2) contamination of California raisins should be addressed further.  相似文献   

9.
Members of Aspergillus belonging to Section Nigri are distributed worldwide and are mainly responsible for the ochratoxin A accumulation in grapes and wine, particularly in Southern Europe. Limited information is available on the species composition and genetic variability of black Aspergilli strains occurring on grapes. We analyzed 283 representative strains from the main wine producing European countries collected in 2001-2002 (Italy, France, Spain, Portugal, Greece and Israel) using amplified fragment length polymorphisms (AFLP) technique. Four main groups were obtained by AFLP clustering analysis of these strains and three of them showed a well defined homogeneous population/species with intraspecific homology higher than 48%: Aspergillus carbonarius (105 strains), Aspergillus tubingensis (69 strains), and Aspergillus "uniseriate" (56 strains) with a similarity less than 20% to the Aspergillus japonicus type strain. The fourth cluster, that we called "A. niger like" (44 strains), showed low homology with A. niger type strain (35%) and high internal heterogeneity. Finally, nine strains could not be assigned readily to any of the type strain of the A. nigri Section. These findings indicate that the Aspergillus Section Nigri strains occurring on grapes in Southern Europe represent a complex of species, and some of these are peculiar to grapes.  相似文献   

10.
Grape and wine production in South America represents about 6.6% and 10% respectively of the world grape and wine production. The available information on the ochratoxigenic mycoflora and ochratoxin A (OTA) presence in wine grapes, wines, grape juices and dried vine fruits is limited. Surveys have been carried out in Argentina and Brazil which showed that Aspergillus niger aggregate are predominant in the Argentinean varieties while from the Brazilian varieties the species A. niger, Aspergillus ochraceus and Aspergillus carbonarius were isolated. A mycobiota survey from wine grapes in Argentina showed that while Alternaria alternata was predominant, Aspergillus section Nigri species were isolated from 60% of samples. About 41% of black Aspergilli isolates produced OTA with levels ranging from 2 to 24.5 ng mL(-1). In another study, about 83% of A. carbonarius isolates from dried vine fruits produced OTA, with levels ranging from 2 to 5200 ng mL(-1). A survey of grape juices and wines of Brazilian, Argentinean and Chilean origin were found to contain very low levels of OTA. Studies are in progress in Latin America on the ecophysiology of ochratoxigenic fungi and OTA occurrence to reduce the impact of this toxin in the food chain.  相似文献   

11.
The ochratoxigenic mycobiota of grapes intended for liqueur wines from four Spanish vineyards were studied. The specific wine-making technology of these wines requires overripening of the grapes on the vine or extended post-harvest exposure of the grapes in the sun. In every vineyard, samples were taken at three different developmental stages: veraison, harvesting time and after over-ripening. With the maturation of the berries there was a clear increase of Aspergillus spp. In the last sampling time studied, they were isolated from the 90.3% of the plated berries. Black aspergilli (mainly A. niger aggregate and A. carbonarius) were predominant among the different Aspergillus spp. isolated and constituted 98.5% of the total Aspergillus strains isolated. At harvesting time and after over-ripening, the percentage of colonized berries with A. carbonarius exceeded that of Aspergillus niger aggregate. Due to their low frequency of isolation, Penicillium spp. and Aspergillus spp. outside black aspergilli are not an important source of ochratoxin A in grapes for liqueur wine production. On the contrary, 98.5% of the A. carbonarius isolates screened were able to produce ochratoxin A. Although the possible participation of different ochratoxin A-producing species may occur, our results confirm that A. carbonarius is the most important source of ochratoxin A in liqueur wines, increasing its occurrence along the ripening of grapes.  相似文献   

12.
The aim of this study was to characterize Ochratoxin A (OTA) production by Aspergillus carbonarius under different environmental conditions, and to elucidate the diffusion capacity of OTA throughout synthetic medium. One strain belonging to the species A. carbonarius isolated from vine dried fruit was single-point inoculated onto triplicate synthetic nutrient medium plates at two water activities (0.92 and 0.97) and two temperatures (20 and 30 degrees C). Daily radii were measured and OTA production was tested after 4, 7, 10, 14 and 18 days of incubation at four distances from the centre of colony (1-4 cm). OTA production was detected mainly at 0.97 a(w). Earlier production was detected at 30 degrees C (optimum for growth), whereas maximum OTA concentrations were found at 20 degrees C. OTA production was detected from mycelium that was only a few days old and attained its optimum when mycelium was 4-7 days old at 0.97 a(w). OTA diffusion was observed at 0.92 a(w) and 20 degrees C. Thus OTA production is discernable in young A. carbonarius mycelium and diffusion of the toxin has been shown to occur in a solid substrate.  相似文献   

13.
Aspergillus strains belonging to section Nigri isolated during a two year survey in eight Sicilian vineyards located on the slopes of Mount Etna (Sicily, Italy) were analysed analyzed in order to characterize species responsible for ochratoxin A (OTA) contamination of grapes. The polyphasic approach permitted analysis of biodiversity of Aspergillus isolates in relation to their morphology, ochratoxigenicity and genetic variability. We assessed OTA production by A. carbonarius, A. niger, A. tubingensis and A. japonicus using an enzyme-linked immunosorbent assay. A. carbonarius isolates were the strongest OTA producers. A subset of 66 representative strains was selected for further DNA-based characterization. PCR assays using species-specific primers discriminated between A. niger, A. carbonarius and A. japonicus on the basis of the target sequences for each species. The PCR-based methods matched morphological characterization in identifying all the black aspergilli (BA) isolates tested, whereas RFLP analysis with RsaI of isolates positive to PCRs with A. niger specific primers identified three A. tubingensis isolates. The identification of thirteen isolates was further confirmed by ITS analysis. By this method, each of the isolates was identified and assigned to an Aspergillus species. The fAFLP analysis of 40 isolates highlighted the power of this technique to discriminate different species and single strains, to verify the presence of mixed populations in the same vineyard, through homogeneous species clusters. No correlation was observed between the clusters and OTA production level or origin.  相似文献   

14.
To evaluate the potential for mycotoxin production by fungi in dried vine fruits, the mycobiota was determined both before and after surface disinfection. Predominant genera were Aspergillus (50.2%), Eurotium (21.4%) and Penicillium (13.5%). Aspergillus section Nigri ("black aspergilli") were isolated with relatively high frequency. Aspergillus niger was the most common species but only 3 of 293 isolates screened were ochratoxin A (OTA) producers. Aspergillus carbonarius was less common but 96% of 48 strains screened were ochratoxigenic. OTA was not produced by A. japonicus. Other toxigenic fungi detected were A. ochraceus (3 strains produced OTA), Aspergillus flavus (5 strains produced cyclopiazonic acid but not aflatoxins), P. citrinum (19 strains were strong citrinin producers) and Alternaria alternata (15 strains were producers of tenuazonic acid, alternariol and alternariol methyl ether). In spite of the high incidence of A. carbonarius capable of producing OTA, low levels of this toxin were detected in the samples analysed.  相似文献   

15.
In 2006 and 2007, 32 Thai dried coffee bean samples (Coffea arabica) from two growing sites of Chiang Mai Province, and 32 Thai dried coffee bean samples (Coffea canephora var. robusta) from two growing sites of Chumphon Province, Thailand, were collected and assessed for the distribution of fungi with the potential to produce ochratoxin A (OTA). The overall percentage of fungal contamination in coffee was 98% and reduced to 60% after surface disinfection. There were remarkable ecological differences in the composition of ochratoxigenic species present in these two regions. Arabica coffee bean samples from the North had an average of 78% incidence of colonization with Aspergillus of section Circumdati with Aspergillus westerdijkiae and A. melleus as the predominant species. Aspergillus spp. of section Nigri were found in 75% of the samples whereas A. ochraceus was not detected. Robusta coffee beans from the South were 98-100% contaminated with predominantly A. carbonarius and A. niger. A. westerdijkiae was only found in one sample. The diversity of the fungal population was probably correlated with the geographical origin of the coffee, coffee cultivar, and processing method. Representative isolates of section Circumdati (52) and Nigri (82) were examined for their OTA production using HPLC with fluorescence detection. Aspergillus westerdijkiae (42 isolates out of 42), A. steynii (13/13), and A. carbonarius (35/35) in general produced large amounts of OTA, while one isolate of A. sclerotiorum produced intermediate amounts of OTA. 13% of the A. niger isolates produced OTA in intermediate amounts. OTA levels in coffee bean samples were analyzed using the Ridascreen OTA ELISA kits. Of the 64 coffee bean samples analyzed, 98% were contaminated with OTA in levels of <0.6-5.5 microg/kg (Arabica) and 1-27 microg/kg (Robusta). Presence of OTA in representative coffee samples was also confirmed by LC-MS/MS after ion-exchange purification.  相似文献   

16.
Table grapes of cv. 'Superior' were sampled from four vineyards during three seasons, for the occurrence of black Aspergillus species that can produce ochratoxin A after storage. The ochratoxin A-producing fungus, Aspergillus carbonarius , was identified in all the samples at harvest and it survived through cold storage. Storage of table grapes for 7 days at 20 °C resulted in occasional increase in the number of isolates recovered from the berries. In contrast, storage for 1 month at 0 °C, with sulphur dioxide (SO2) generator pads reduced the number of isolates significantly or completely, depending on the dose. Dipping the clusters in ethanol prior to cold storage did not reduce the number of isolates of the Aspergillus niger aggregate after storage. Exposure of A. carbonarius to a final level of 0.4 ppm of SO2 resulted in fewer fungal colonies than in the control, and the surviving spores developed into fungal colonies that failed to sporulate. These results demonstrate that A. carbonarius is ubiquitous on table grapes before storage and care should be taken to avoid its contamination.  相似文献   

17.
The presence of the mycotoxin, ochratoxin A (OTA), has been reported in Australian grape products. Comprehensive surveys of Australian wines have determined that the frequency and level of OTA contamination are low. Aspergillus carbonarius is the primary OTA-producing species associated with grapes in Australia, and all isolates tested to date produce OTA. Aspergillus niger is isolated more frequently from vineyards, however, few strains produce OTA. A. carbonarius and A. niger exist as saprophytes in the top layer of soil beneath vines, from where they are thought to be blown onto bunches. The level of A. carbonarius in soil may be reduced by temperatures above or below the optimum temperature for survival (25 degrees C), by high soil moisture content, and by modifications to tillage and mulching practices. A. carbonarius is an opportunistic pathogen of damaged berries. In the absence of damage, spores may exist on berry surfaces without causing visible rots. Aspergillus rots are associated with black Aspergillus species, primarily A. niger, A. carbonarius and A. aculeatus. The potential for such rots is increased with berry damage, inoculum coverage and berry maturity. Susceptibility to berry splitting is related, in part, to bunch structure, and may be variety-dependent or influenced by rainfall, irrigation and canopy management. Black Aspergillus spp. are closely associated with berries near the main stem of the bunch. During winemaking, around 80% of the OTA initially present in grapes is removed, primarily with the skins and pulp during pressing. Additional reductions occur with the removal of precipitated grape and yeast solids. Bentonite in white wine and yeast hulls in red wine were the most effective non-carbonaceous fining agents for the removal of OTA.  相似文献   

18.
The occurrence of ochratoxin A (OTA) and the identification of the ochratoxigenic microbiota in Tunisian grapes were studied for the first time. Black aspergilli were the dominant genus among the filamentous fungi isolated from grapes and were the only potential OTA-producing fungi found. The most abundant species were member of Aspergillus niger aggregate (63%) and Aspergillus carbonarius (36%). Uniseriate aspergilli were rarely present (1%). Of the A. carbonarius isolates, 97% were OTA positive but only 3% of the A. niger aggregate isolates were OTA positive. During grape maturation, the frequency of black aspergilli increased due to increase of the numbers of A. carbonarius. Musts (n=24) obtained from grapes collected at the different sampling times were analyzed for their OTA content. Up to 37% of the musts contained OTA at levels varying between 0.59 and 2.57 microg/l. The amounts of OTA in musts increased as grapes matured. These results indicate that A. carbonarius is the main cause of OTA contamination of Tunisian grapes.  相似文献   

19.
Ochratoxin A (OA) is receiving attention worldwide because of the hazard it poses to human and animal health. OA contamination of commodities, such as cereals or pork and poultry meat, is well recognized. Nevertheless, there is an increasing number of articles reporting OA contamination in other food commodities, such as coffee, beer, wine, grape juice, and milk, in the last few years. This continuous and increasing exposure to OA that humans experience is reflected in the high incidence of OA in both human blood and milk in several countries. OA was believed to be produced only by Aspergillus ochraceus and closely related species of section Circumdati and by Penicillium verrucosum; however, in the genus Aspergillus, the production of OA has been recently reported by species outside the section Circumdati. Thus, it has been clearly established as a metabolite of different species of the section Nigri, such as Aspergillus niger and Aspergillus carbonarius. OA production ability by Aspergillus spp. is more widespread than previously thought; therefore, there is the possibility that unexpected species can be new sources of this mycotoxin in their natural substrates.  相似文献   

20.
The effect of water activity (aw) (0.78-0.99) and temperature (15 and 30 degrees C) on growth and production of ochratoxin A (OTA) of six Aspergillus carbonarius strains was studied in two culture media: Czapek yeast autolysate (CYA) agar and yeast extract sucrose (YES) agar, during a period of 30 days. The strains were selected to include different sources and different reported abilities to produce OTA and were characterized by RAPD and ITS-5.8S rDNA sequencing. CYA showed to be better culture medium than YES for OTA production in the isolates tested. OTA concentration was higher at 15 degrees C than at 30 degrees C. At 30 degrees C, ranges for OTA production were more restrictive than those for growth. OTA was produced from 0.86, 0.90 or 0.94 aw depending on the strain. At 15 degrees C, growth and OTA production were detected only in the 0.94-0.99 aw range. The molecular study performed showed that five of the strains were conspecific and no correlation was found between molecular data and the OTA production level or origin. The remaining strain had never been able to produce OTA and will probably represent a new species in the Aspergillus section Nigri. Our results show that A. carbonarius is able to grow and produce OTA in a wide range of water activities at both high and low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号