首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The function of a protein is closely correlated to its subcellular location. Is it possible to utilize a bioinformatics method to predict the protein subcellular location? To explore this problem, proteins are classified into 12 groups (Protein Eng. 12 (1999) 107-118) according to their subcellular location: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. In this paper, the neural network method was proposed to predict the subcellular location of a protein according to its amino acid composition. Results obtained through self-consistency, cross-validation and independent dataset tests are quite high. Accordingly, the present method can serve as a complement tool for the existing prediction methods in this area.  相似文献   

2.
The concrete is today the building material by excellence. Drying accompanies the hardening of concrete and leads to significant dimensional changes that appear as cracks. These cracks influence the durability of the concrete works. Deforming a concrete element subjected to long-term loading is the sum of said instantaneous and delayed deformation due to creep deformation. Concrete creep is the continuous process of deformation of an element, which exerts a constant or variable load. It depends in particular on the characteristics of concrete, age during loading, the thickness of the element of the environmental humidity, and time. Creep is a complex phenomenon, recognized but poorly understood. It is related to the effects of migration of water into the pores and capillaries of the matrix and to a process of reorganization of the structure of hydrated binder crystals. Applying a nonparametric approach called artificial neural network (ANN) to effectively predict the dimensional changes due to creep drying is the subject of this research. Using this approach allows to develop models for predicting creep. These models use a multilayer backpropagation. They depend on a very large database of experimental results issued from the literature (RILEM Data Bank) and on appropriate choice of architectures and learning processes. These models take into account the different parameters of concrete preservation and making, which affect drying creep of concrete as relative humidity, cure period, water-to-cement ratio (W/C), volume-to-surface area ratio (V/S), and fine aggregate-to-total aggregate ratio, or fine aggregate-to-total aggregate ratio. To validate these models, they are compared with parametric models as B3, ACI 209, CEB, and GL2000. In these comparisons, it appears that ANN approach describes correctly the evolution with time of drying creep. A parametric study is also conducted to quantify the degree of influence of some of the different parameters used in the developed neural network model.  相似文献   

3.
The formation of protein secondary structure especially the regions of β-sheets involves long-range interactions between amino acids. We propose a novel recurrent neural network architecture called segmented-memory recurrent neural network (SMRNN) and present experimental results showing that SMRNN outperforms conventional recurrent neural networks on long-term dependency problems. In order to capture long-term dependencies in protein sequences for secondary structure prediction, we develop a predictor based on bidirectional segmented-memory recurrent neural network (BSMRNN), which is a noncausal generalization of SMRNN. In comparison with the existing predictor based on bidirectional recurrent neural network (BRNN), the BSMRNN predictor can improve prediction performance especially the recognition accuracy of β-sheets.  相似文献   

4.
基于神经网络集成的蛋白质二级结构预测模型   总被引:2,自引:3,他引:2  
为了提高蛋白质二级结构预测精度,本文尝试采用一种基于串联BP网络集成的二级结构预测模型。首先根据二级结构是由其一级序列决定以及神经网络输出之间具有相关性,采用串联BP作为集成的子网络分类器,在训练过程中采用“剪枝法”和“早停”来防止过拟合。其次为增加网络的差异度,利用bagging方法对样本重采样并加入随机噪声。把单独训练的具有一定差异度的5个子网络利用相对多数“投票规则”进行整合。以Rs126中的90个蛋白质共15 377个氨基酸进行10倍率交叉验证,仿真结果表明此网络集成可以较好地对二级结构进行分类。  相似文献   

5.
Prediction of protein secondary structure is considered to be an important step toward elucidating the three-dimensional structure and function of proteins. We have developed a multimodal neural network (MNN) to predict protein secondary structure. The MNN is composed of several subclassifiers for single-state predictions using neural networks and a decision neural network (DNN). Each subclassifier employs a number of subnetworks to predict the single-state of the secondary structure individually and produces the final results by majority decision. The DNN uses a three-layer neural network to produce the final overall prediction from the outputs of the single-state predictions. The MNN gives an overall accuracy of 71.1% with corresponding Matthews correlation coefficients of CH = 0.62 and CE = 0.53. The prediction test is based on a database of 126 nonhomologous protein sequences. This work was presented, in part, at the 8th International Symposium on Artificial Life and Robotics, Oita, Japan, January 24#x2013;26, 2003.  相似文献   

6.
The prediction of secondary structure is an important topic in the field of bioinformatics, even if the methods have matured, and development of the algorithms is a far less active area than a decade ago. Accurate prediction is very useful to biologists in its own right, but it is worth pointing out that it is also an essential component of tertiary structure prediction, which in contrast is far from solved and continues to be a highly active area of research. In addition, sequence comparison methods have more recently incorporated local structure tracks. The extra information utilized by the new methods has led to considerable improvements in fold recognition and alignment accuracy. In this paper, a novel method for protein secondary structure prediction is presented. Using evolutionary information contained in amino acid’s physicochemical properties, position-specific scoring matrix generated by PSI-BLAST and HMMER3 profiles as input to hybrid back propagation system, secondary structure can be predicted at significantly increased accuracy. Based on knowledge discovery theory based on inner cognitive mechanism (KDTICM) theory, we have constructed a compound pyramid model approach, which is composed of four layers of the intelligent interface and integrated in several ways, such as hybrid back propagation method (HBP), modified knowledge discovery in databases (KDD*), hybrid SVM method (HSVM) and so on. Experiments on three standard datasets (RS126, CB513 and CASP8) show that CPM is capable of producing the higher Q 3 and SOV scores than that achieved by existing widely used schemes such as PSIPRED, PHD, Predator, as well as previously developed prediction methods. On the RS126 and CB513 datasets, it achieves a Q 3 and SOV99 score are considerably higher than the best reported scores, respectively. It is also tested on target proteins of critical assessment of protein structure prediction experiment (CASP8) and achieves better results than the traditional methods, including the popular PSIPRED method over overall prediction accuracy. Available: .  相似文献   

7.
8.
Most of flood disaster predictions belong to ill-structured problems, while artificial neural network (ANN) has several characteristics that are suitable for solving them. In this paper, a neural network based predictive method for flood disaster problem is proposed in which the neural network model and its basic designing principles are described, and an example of flood disaster area in China from 1949 to 1994 is used for demonstration.  相似文献   

9.
神经网络具有容易陷入局部极小的缺点,动态隧道神经网络通过“钻隧道”方式,让目标函数跳出局部最小,找到更小的可行域,从而避免神经网络陷入局部极小。传统的动态隧道技术隧道方向单一并且随意,因此具有不稳定性。为了有效提高动态隧道的搜索效率,提出了一种改进型动态隧道神经网络算法。该算法增加搜索的隧道数,引入夹角弹性系数控制隧道方向,考察隧道之间的相互影响。在对alpha、beta和coil型蛋白质的二级结构预测的实验中,改进型动态隧道神经网络算法预测的效果优于神经网络算法和传统的动态隧道神经网络算法。  相似文献   

10.
11.
Pyrometallurgy is often used in the industrial process for treating gold-bearing slime. Slag compositions have remarkable influences on gold recovery and gold content in slag. In this paper, the relationships between the slag compositions in the soda–borax–silica glass-salt system and the gold content in the slag are investigated by using nonlinear regression and artificial neural network. A neural network model for estimating the gold contents of different slag compositions is presented, including the neural network type, structure and its learning algorithms. The study indicates that the three-layer back propagation neural network model can be applied to estimate gold content in the slag. Compared with the traditional regression methods, the neural network has many advantages.  相似文献   

12.
煤与瓦斯突出的粗神经网络预测模型研究   总被引:3,自引:0,他引:3       下载免费PDF全文
将粗集方法作为BP神经网络的前端处理器,通过对煤与瓦斯系统属性特征的提取和影响因素的约简,较好解决了预测输入特征的“维数灾”问题,构建了粗集与神经网络相结合的煤与瓦斯突出预测模型。仿真实验表明,验证了该方法的有效性,模型学习速度更快、精确度更高,对提高瓦斯突出预测时效性有重大意义。  相似文献   

13.
为提高蛋白质二级结构预测的精确度,提出并构建精确的径向基神经网络、广义回归神经网络,并基于5位编码和Profile编码,采用不同大小的滑动窗口,利用交叉检证法构建多个径向基网络预测器,分别对蛋白质二级结构进行预测,得到了较好的实验结果,其中aveQ3提高到70.96%。结果表明,径向基神经网络模型能有效提高预测精确度,也证明了实验方法的有效性和可行性。  相似文献   

14.
This work presents an approach to the modeling of a real industrial isomerization reactor by using artificial neural networks (ANN) pre-processed with principal component analysis (PCA). The initial model considered the output fructose concentration as the output variable, while the flow rate of substrate to the reactor as the principal input variable. Then, the ANN model was restructured and inversely trained by assuming the exit fructose concentration as the input variable and the feed flow rate as the output variable. Results indicate good performance by the application of the developed strategy to an extensive industrial data set. The results are expected to be useful in future, controlling the fructose concentration in the HFCS isomerization reactor.  相似文献   

15.
16.
In this paper, we introduce two artificial neural network formulations that can be used to assess the preference ratings from the pairwise comparison matrices of the Analytic Hierarchy Process. First, we introduce a modified Hopfield network that can determine the vector of preference ratings associated with a positive reciprocal comparison matrix. The dynamics of this network are mathematically equivalent to the power method, a widely used numerical method for computing the principal eigenvectors of square matrices. However, this Hopfield network representation is incapable of generalizing the preference patterns, and consequently is not suitable for approximating the preference ratings if the pairwise comparison judgments are imprecise. Second, we present a feed-forward neural network formulation that does have the ability to accurately approximate the preference ratings. We use a simulation experiment to verify the robustness of the feed-forward neural network formulation with respect to imprecise pairwise judgments. From the results of this experiment, we conclude that the feed-forward neural network formulation appears to be a powerful tool for analyzing discrete alternative multicriteria decision problems with imprecise or fuzzy ratio-scale preference judgments.  相似文献   

17.
为提高二级结构预测精度,试用神经网络集成法预测.针对BRNN网络结构复杂、收敛时间长、参数多的缺点,本文提出一种改进的新BRNN网络,删除BRNN左、右子网络的隐层,直接将输入连接到状态层,并采用BP改进算法中的弹性算法训练.以90条蛋白质序列共15 377个氨基酸交叉验证,仿真结果表明新网络可以有效地缩短收敛时间,新BRNN集成预测二级结构效果较好.  相似文献   

18.
A multilayered neural network is a multi-input, multi-output nonlinear system in which network weights can be trained by using parameter estimation algorithms. In this paper, a novel training method is proposed. This method is based on the relatively new smooth variable structure filter (SVSF) and is formulated for feed-forward multilayer perceptron training. The SVSF is a state and parameter estimation that is based on the sliding mode concept and works in a predictor–corrector fashion. The SVSF training performance is tested on three benchmark pattern classification problems. Furthermore, a study is presented comparing the popular back-propagation method, the extended Kalman filter, and the SVSF.  相似文献   

19.
一种广义小波神经网络的结构及其优化方法   总被引:6,自引:0,他引:6  
从理论上分析了小波神经网络节点过多及鲁棒性差的原因,基于主成份分析 (PCA)的思想提出了一种规模小、抗干扰性强的广义小波神经网络(EWNN)及其优化方法.仿真结果表明,用该方法设计的广义小波神经网络,其非线性逼近能力及稳定性都明显优于普通小波神经网络.  相似文献   

20.
This paper reports on a modelling study of new solar air heater (SAH) system by using artificial neural network (ANN) and wavelet neural network (WNN) models. In this study, a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate SAH. A SAH system is a multi-variable system that is hard to model by conventional methods. As regards the ANN and WNN methods, it has a superior capability for generalization, and this capability is independent on the dimensionality of the input data’s. In this study, an ANN and WNN based methods were intended to adopt SAH system for efficient modelling. To evaluate prediction capabilities of different types of neural network models (ANN and WNN), their best architecture and effective training parameters should be found. The performance of the proposed methodology was evaluated by using several statistical validation parameters. Comparison between predicted and experimental results indicates that the proposed WNN model can be used for estimating the some parameters of SAHs with reasonable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号