首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
透明导电InSnGaMo氧化物薄膜光电性能研究   总被引:1,自引:0,他引:1  
利用脉冲激光沉积法在石英衬底上制备出了可见光透过率高、电阻率极低的Ga,Mo共掺杂ITO基InSnGaMo复合氧化物薄膜。研究了衬底温度对薄膜结构、表面形貌、光电性能的影响。实验结果表明:衬底温度对InSnGaMo复合氧化物薄膜形貌、光电性能均有很大影响。X射线衍射、扫描电镜和霍尔测试结果表明,随着衬底温度的升高,薄膜晶粒度增大,电阻率快速下降,可见光平均透过率明显提高。当衬底温度为450℃时,InSnGaMo复合氧化物薄膜的电阻率最低为4.15×10-4Ω.cm,载流子浓度和迁移率最大分别为3×1020cm-3,45 cm2V-1s-1,在可见及近红外区平均透过率达92%,特别地,波长为362 nm时,最高透射率可达99%。  相似文献   

2.
We present a study on the impurity incorporation and nitrogen doping of ZnSe epilayers grown by metalorganic vapour phase epitaxy (MOVPE) on (1 0 0)GaAs using dimethylzinc.triethylamine (DMZn.TEN), diethylselenium (DESe) and trimethylsilylazide (TMSiN3) as the Zn, Se and N precursors, respectively. Both pyrolytic and photoassisted MOVPE (PA-MOVPE) experiments have been carried out to identify the conditions for high purity growth. Characterization included both secondary ion mass spectrometry (SIMS) analysis to assess the incorporation of H, N and halogen impurities in the epilayers and 10 K photoluminescence (PL) measurements. SIMS elemental analysis of halogens in undoped ZnSe shows that the concentration of these impurities is of the order of 1×1015 cm-3, whilst the hydrogen concentration is about 2×1017 cm-3. In nominally undoped ZnSe epilayers an unexpectedly high level of nitrogen, ranging between 3×1016 cm-3 and 1×1018 cm-3, was found. The presence of N in undoped epilayers was confirmed by 10 K PL spectra, which are dominated by a N-related donor-acceptor-pair (DAP) band along with its LO-phonon replica and weaker bound exciton features in the near band-edge region. Finally, intentionally nitrogen doped ZnSe samples were grown by using TMSiN3 under PA-MOVPE conditions at 380 °C. SIMS analysis shows an efficient N incorporation up to 1×1020 cm-3 but increasing the N precursor partial pressure causes the growth rate to decrease together with an increase of the H content in the layers. 10 K PL spectra of doped ZnSe show a sharp nitrogen bound exciton peak in the near band-edge region along with dominant features ascribed to a free electron to acceptor transition at 2.710 eV and to a DAP band at around 2.695 eV, followed by their LO-phonon replica. © 1998 Chapman & Hall  相似文献   

3.
The structure of the surface layers and the corrosion resistance of austenitic stainless steels after silicon-ion implantation, were examined. The implanted silicon doses were 1.5×1017, 3×1017 and 4.5×1017 Si+ cm-2. Implantation with all these doses gave an amorphous surface layer. When samples implanted with 1.5×1017 Si+ cm-2 were annealed at temperatures of 300 and 500 °C, their surface structure remained unchanged. After annealing at 650 °C, the amorphous layer vanished. It was determined how, in terms of corrosion resistance, the amount of implanted silicon, subsequent heat treatment and long time exposure, affect highly corrosion-resistant austenitic stainless steel (18/17/8) in comparison to the 316L austenitic stainless steel subjected to the same treatment. Corrosion examinations were carried out in 0.9% NaCl at a temperature of 37 °C. After silicon-ion implantation the corrosion resistance of the 316L steel increased while that of highly resistant (18/17/8) did not. The corrosion resistance of the investigated steels, both implanted and non-implanted, increased with the exposure time of the samples in the test environment. © 1998 Kluwer Academic Publishers  相似文献   

4.
Ga- or In-doped BaSi2 films were grown on Si(111) by molecular beam epitaxy (MBE). The Ga-doped BaSi2 showed n-type conductivity. The electron concentration and resistivity of the Ga-doped BaSi2 depended on the Ga temperature; however, the electron concentration and resistivity could not be controlled properly. In contrast, the In-doped BaSi2 showed p-type conductivity and its hole concentration was controlled in the range between 1016 and 1017 cm− 3 at RT.  相似文献   

5.
Thin PbTe films on Si substrates were doped with Ga via annealing in the vapor produced by heating a Ga(l) + GaTe(s) mixture (GaTe(s) + L 1+ Vequilibrium). Electrical measurements showed that the vapor-phase doping reduced the hole concentration in the films by more than two orders of magnitude. IR irradiation was found to reduce the resistivity of the PbTe films by a factor of 40–100. The films annealed in the vapor over GaTe(s) + L 1for the longest time exhibited an anomalous temperature variation of resistance, which was interpreted as due to the limited Ga solubility in PbTe.  相似文献   

6.
Ultra-thin gallium nitride (GaN) films were deposited using the ion-beam assisted molecular-beam epitaxy technique. The influence of the nitrogen ion to gallium atom flux ratio (I/A ratio) during the early stages of GaN nucleation and thin film growth directly, without a buffer layer on super-polished 6H-SiC(0001) substrates was studied. The deposition process was performed at a constant substrate temperature of 700 °C by evaporation of Ga and irradiation with hyperthermal nitrogen ions from a constricted glow-discharge ion source. The hyperthermal nitrogen ion flux was kept constant and the kinetic energy of the ions did not exceed 25 eV. The selection of different I/A ratios in the range from 0.8 to 3.2 was done by varying the Ga deposition rate between 5 × 1013 and 2 × 1014 at. cm− 2 s− 1. The crystalline surface structure during the GaN growth was monitored in situ by reflection high-energy electron diffraction. The surface topography of the films as well as the morphology of separated GaN islands on the substrate surface was examined after film growth using a scanning tunneling microscope without interruption of ultra-high vacuum. The results show, that the I/A ratio has a major impact on the properties of the resulting ultra-thin GaN films. The growth mode, the surface roughness, the degree of GaN coverage of the substrate and the polytype mixture depend notably on the I/A ratio.  相似文献   

7.
A high rate deposition of co-doped ZnO:Ga,F and ZnO-In2O3 multicomponent oxide thin films on large area substrates has been attained by a vacuum arc plasma evaporation method using oxide fragments as a low-cost source material. Highly transparent and conductive ZnO:Ga,F and ZnO-In2O3 thin films were prepared on low temperature substrates at a deposition rate of approximately 375 nm/min with a cathode plasma power of 10 kW. A resistivity of 4.5×10−4 Ω cm was obtained in ZnO:Ga,F films deposited at 100 °C using ZnO fragments co-doped with 1 wt.% ZnF2 and 1 wt.% Ga2O3 as the source material. In addition, the stability in acid solution of ZnO films was improved by co-doping. It was found that the Zn/(In+Zn) atomic ratio in the deposited ZnO-In2O3 thin films was approximately the same as that in the fragments used. The ZnO-In2O3 thin films with a Zn/(In+Zn) atomic ratio of approximately 10-30 at.% deposited on substrates at 100 °C exhibited an amorphous and smooth surface as well as a low resistivity of 3-4×10−4 Ω cm.  相似文献   

8.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

9.
Moisture durability of ZnO transparent conductive films was achieved with Ga heavy doping by off-axis type rf magnetron sputtering. The resistivity of 10.9 at.% Ga-doped ZnO was 1.3 × 10−3 Ωcm and changed less than 5% of resistivity over a 9400-h reliability test at a temperature of 85 °C and humidity of 85%. The crystal structural analysis of the heavily Ga-doped ZnO films indicated that the c-axis was oriented in various directions as well as the perpendicular direction to the substrate surface. The heavily doped Ga disorders the crystal growth of ZnO films and forms a different crystal structure from conventional ZnO.  相似文献   

10.
GaN films were deposited on Si (111) substrates at a high growth rate of 94 nm/min using middle-frequency (MF) magnetron sputtering method with anode-layer ion source assistance. XRD, TEM and PL experiments were used to investigate the structure and optical properties of the resulting films. GaN films produced under optimal conditions have an almost 1:1 N: Ga ratio. The O concentration decreased while the deposition rate increased with the increasing of bias voltages. Hexagonal polycrystal nature of the films was detected by the TEM and XRD measurements. Peaks located at 3.36 eV labeled as free-exciton were detected in the temperature dependence photoluminescence spectra. The binding energies of N 1s and Ga 3d were centered at 397.5 and 19.8 eV, respectively. The results show that the ion beam-assisted MF reactive magnetron sputtering method can be an encouraging method for deposition of polycrystalline GaN films at low temperatures.  相似文献   

11.
《Vacuum》2012,86(3):280-284
GaN films were deposited on Si (111) substrates at a high growth rate of 94 nm/min using middle-frequency (MF) magnetron sputtering method with anode-layer ion source assistance. XRD, TEM and PL experiments were used to investigate the structure and optical properties of the resulting films. GaN films produced under optimal conditions have an almost 1:1 N: Ga ratio. The O concentration decreased while the deposition rate increased with the increasing of bias voltages. Hexagonal polycrystal nature of the films was detected by the TEM and XRD measurements. Peaks located at 3.36 eV labeled as free-exciton were detected in the temperature dependence photoluminescence spectra. The binding energies of N 1s and Ga 3d were centered at 397.5 and 19.8 eV, respectively. The results show that the ion beam-assisted MF reactive magnetron sputtering method can be an encouraging method for deposition of polycrystalline GaN films at low temperatures.  相似文献   

12.
Single crystalline undoped and Ga-doped n-type zinc oxide (ZnO) films were grown on sapphire (Al2O3) substrates by inductively coupled plasma (ICP) metal organic chemical vapor deposition. Effects of growth variables on the structural, optical, and electrical properties of ZnO films have been studied in detail. Single crystal films with flat and smooth surfaces were reproducibly obtained, with application of sample bias and O2 ICP. The best film properties were obtained at the growth condition of 650 °C, 400 W ICP power, − 94 V bias voltage, O/Zn (VI/II) ratio of 75. Single crystalline Ga doped n-ZnO films were also obtained, with free carrier concentration of about 1.5 × 1019/cm3 at 1 at.% Ga concentration.  相似文献   

13.
InGaZnO thin films grown by pulsed laser deposition   总被引:1,自引:0,他引:1  
We fabricated InGaZnO (IGZO) ceramic target (In: Ga: Zn = 1: 1: 4 in atomic ratio) using solid-state reaction at ambient atmosphere, and deposited IGZO thin films on quartz glass at room temperature under various oxygen partial pressures using the pulsed laser deposition method. Influence of oxygen pressure on crystal structure, surface morphology, optical and electrical properties were investigated. It was found that all the films deposited at room temperature exhibit amorphous structure. On the other hand, the physical properties of the films like transparency, electron mobility, and free-electron concentration were found to be correlated to the oxygen pressure during the deposition and in turn to the possible oxygen vacancies or metallic interstitials in the films. The analysis of X-ray photoelectron spectra (XPS) of the films indicated that there are no metallic 3d states of In, Ga and Zn, suggesting that oxygen vacancies could be main defects that affect physical properties of the films.  相似文献   

14.
报道了生长SiC单晶的PVT法生长工艺,研究了晶体生长温度、温度梯度、生长室压力、杂质等因素对晶体生长和晶体质量的影响,确定出合理的工艺条件,生长出φ45mmSiC单晶.X射线衍射表明,生长的单晶为6H多型结构,通过腐蚀法得到晶体中微管道密度约为103cm-2,位错密度约为104~105cm-2.测试了SiC单晶的半导体特性,结果表明:晶体为n型,电阻率约300Ω·cm,迁移率90cm2V-1S-1,载流子浓度在1014cm-3量级.  相似文献   

15.
Transparent conductive nano ZnO thin films with different Ga doping concentrations (1, 3, 5, 7 at.%) were prepared on glass substrate by RF magnetron sputtering. The influence of Ga doping concentration on the structural, electrical and optical properties of ZnO:Ga films was investigated by XRD, SEM, Hall measurement and optical-transmission spectroscopy. It shows that the nano ZnO:Ga films are dense and flat, and have polycrystalline structure with preferential (002) and weak (101) orientation. The grain sizes, carrier concentration and Hall mobility changes non-linearly with the increase of Ga-content. The lowest resistivity of 1.44×10−3 Ωcm appears at 3 at.% Ga doping concentration. The average transmittance of the films is about 80∼90% in the visible range. The optical band gap obtained for these films is larger than for pure ZnO (∼3.37 eV).  相似文献   

16.
Gallium tin oxide composite (GTO) thin films were prepared by electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD). The organometallics of tetramethlytin and trimethylgallium were used for precursors of gallium and tin, respectively. X-ray diffraction (XRD) characterization indicated that the gallium tin oxide composite thin films show the nanopolycrystalline of tetragonal rutile structure. Hall measurement indicated that the Ga/[O+Sn] mole ratio play an important role to determine the electrical properties of gallium tin composite oxide thin films. n-type conducting film obtained Ga/[O+Sn] mole ratio of 0.05 exhibited the lowest electrical resistivity of 1.21 x 10(-3) ohms cm. In our experimental range, the optimized carrier concentration of 3.71 x 10(18) cm(-3) was prepared at the Ga/[O+Sn] mole ratio of 0.35.  相似文献   

17.
The effects of power and pressure on radiofrequency (RF) diode sputtering in oblique-angle (80°) deposition arrangement are presented. Oblique-angle sputtering of ZnO:Ga (GZO) thin films resulted in a tilted columnar crystalline structure and inclination of the c-axis by an angle of approximately 9° with respect to the substrate. This improved their structural, electrical and optical properties in comparison with films deposited perpendicularly to the substrate. GZO films sputtered by an RF power of 600 W at room temperature of the substrate in Ar pressure 1.3 Pa showed strong crystalline (002) texture, lowest electrical resistivity 3.4 × 10− 3 Ωcm, highest electron mobility 10 cm2 V− 1 s− 1, high electron concentration 1.8 × 1020 cm− 3 and good optical transparency up to 88%. The small inclination angle of the film structure is caused by the high kinetic energy of sputtered species and additional energetic particle bombardment causes random surface diffusion, which is suppressing the shadow effect produced by oblique-angle sputtering.  相似文献   

18.
Bo Hyun Kong 《Thin solid films》2010,518(11):2975-2979
We investigated the structural, electrical, and optical properties of ZnO thin films grown at different VI/II ratios on sapphire substrates by metalorganic chemical vapor deposition. Transmission electron microscopy and X-ray diffraction revealed the epitaxial nature with a reduced dislocation density of the ZnO films grown at increased VI/II ratios. The carrier concentration of the films increased to 4.9 × 1018 cm− 3 and their resistivity decreased to 1.4 × 10− 1 Ω cm at a VI/II ratio of 513.4 μmol/min. The ZnO films also showed good optical transmittance (> 80%) in the visible and near-infrared wavelength regions. The room temperature PL revealed a strong band-edge emission with a weak deep level emission, suggesting the good crystalline quality of the ZnO films on the sapphire substrates. Furthermore, the intensity ratio of the band-edge emission to the deep-level emission (IUV/IVis) increased with increasing VI/II ratio.  相似文献   

19.
喷雾热解法生长N掺杂ZnO薄膜机理分析   总被引:8,自引:0,他引:8  
通过超声喷雾热解工艺,以醋酸锌和醋酸铵的混合水溶液为前驱溶液,在单晶Si(100) 衬底上制备了N掺杂ZnO薄膜,采用热质联用分析(TG—DSC—MS)、X射线衍射(XRD)、场发射扫描电镜(FESEM)和霍耳效应(Hall-effect)测试等手段研究了喷雾热解工艺下N掺杂ZnO薄膜的生长机理、晶体结构和电学性能.结果表明,随衬底温度的不同,薄膜呈现出不同的生长机理,从而影响薄膜的晶体结构和电学性能.在优化的衬底温度下,实现了ZnO薄膜的p型掺杂,得到的p型ZnO薄膜具有优异的电学性能,载流子浓度为3.21×1018cm-3,霍耳迁移率为110cm2·V-1s-1,电阻率为1.76×10-2Ω·cm.  相似文献   

20.
Ar流量对磁控溅射制备Al掺杂ZnO薄膜的影响   总被引:1,自引:0,他引:1  
Al掺杂ZnO(AZO)具有电导率高、光学透射率高的优点,且原料来源丰富、制备成本低廉,被认为是最有应用潜力的透明导电薄膜.本文利用射频磁控溅射制备30 cm×30 cm尺寸大面积AZO薄膜,研究了气压恒定时,Ar流量对薄膜晶粒生长机制、电学和光学性能的影响.结果表明,AZO薄膜晶粒均表现出垂直基片方向的c轴择优取向生...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号