首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
"V"型内锥式流量计的应用前景   总被引:4,自引:0,他引:4  
长期以来,标准孔板由于其发展技术成熟、标准化程度高、结构简单等特点在过热蒸汽流量计量中得到非常广泛的应用.然而,孔板流量计存在着一些固有的缺陷,如流出系数不稳定、线形差、重复性不高、准确度受客观因素制约而无法达到设计要求、量程比小、压损大等.本文介绍"V"型内锥式差压流量计的工作原理,分析了如何解决孔板流量计的这些缺陷,并通过计算实例介绍"V"型内锥式流量计在节能方面的优点,最后介绍在恶劣条件下"V"型内锥式流量计是如何提供准确计量的.  相似文献   

2.
Cavitating venturis (CVs) are simple devices which can be used in different industrial applications to passively control the flow rate of fluids. In this research the operation of small-sized CVs is characterized and their capabilities in regulating the mass flow rate were experimentally and numerically investigated. The effect of upstream and downstream pressures, as well as geometrical parameters such as the throat diameter, throat length, and diffuser angle on the mass flow rate and critical pressure ratio were studied. For experimental data acquisition, three CVs with throat diameters of 0.7, 1 and 1.5 mm were manufactured and tested. The fabricated CVs were tested at different upstream and downstream pressures in order to measure their output mass flow rate and to obtain their characteristic curves. The flow inside the CVs was also simulated by computational fluid dynamics. The numerical results showed agreement with the experimental data by a maximum deviation of 5–10% and confirmed that the numerical approach can be used to predict the critical pressure ratio and mass flow rate at cavitaing condition. It is found that despite the small size of venturis, they are capable of controlling the mass flow rate and exhibit the normal characteristics. By decreasing the throat diameter, their cavitating mode became more limited. Results also show that increasing the diffuser angle and throat length leads to a decrease in critical pressure ratio.  相似文献   

3.
内文丘里管流量计   总被引:3,自引:0,他引:3  
本文介绍了一种集经典文丘里管、环形孔板和耐磨孔板计量性能成于一体的新型差压装置--内文丘里管,对这种差压装置的结构、测量原理、技术性能、适用范围、可膨胀性系数的确定方法以及内文丘里管优异计量性能形成的机理作了简要的论述,同时还展望了该种差压装置有望取代孔板等传统差压装置的广泛应用与良好发展前景。  相似文献   

4.
    
Despite the intricacy, inline metering of two-phase flow has a significant impact in multitudinous applications including fusion reactors, oil, nuclear, and other cryogenic systems. Since measurement of individual flow rate is prominent in various systems, it warrants the establishment of a flow meter system that can monitor the mass flow rates of liquid. In this regard, an approach was taken towards the development of a two-phase flow meter system in the present study. The concept involves two-phase flow through narrow parallel rectangular channels resulting in laminar, stratified flow with a slope at the liquid-vapor interface. The height of the liquid column at specific channel locations is measured for determining the flow rate. However, the geometric configurations of the channels and fluid properties are pivotal in ensuring accurate measurement. Consequently, theoretical and experimental studies are performed to investigate the correspondence between flow rate and change in liquid height. Based on the governing equations, a theoretical model is established using MATLAB®. The model investigated the intricate influence of various flow and fluid properties in the estimation of the mass flow rate. The experimental investigation was done with various conditions under different liquid and vapor volume flow rates for validating the proposed supposition and the theoretical model. Both the theoretical and experimental analyses showed fair correspondence. The proposed system estimated the mass flow rate within a tolerance of ±10% and showed potential towards the development of the cryogenic two-phase flow meter.  相似文献   

5.
压差波动信号由于其容易测量,而且包含流动的很多信息而被广泛用于气液两相流的研究中。在测量时由于难免受到各种干扰,这些干扰会影响非线性分析的精度和结果。因此,在利用压差波动信号进行非线性分析之前,通常要对其进行滤波处理。究竟多高频率以上的压差波动信号才是噪声,并如何对其进行定量检测的研究就非常重要。这里对水平管内气液两相流压差波动信号用小波包进行分解,得到按16Hz等间隔分段的16个不同频带信号,用自相关函数研究了各频段信号的线性相关性。通过理论证实了气液两相流压差波动信号中,64Hz以上信号不存在线性相关性,可以认为其是噪声信号。研究指出通过气液两相流压差波动信号来研究流型信息时,应考虑64Hz以下信号。  相似文献   

6.
  总被引:23,自引:0,他引:23  
Wet gas metering is becoming an increasingly important problem to the Oil and Gas Industry. The Venturi meter is a favoured device for the metering of the unprocessed wet natural gas production flows. Wet gas is defined here as a two-phase flow with up to 50% of the mass flowing being in the liquid phase. Metering the gas flowrate in a wet gas flow with use of a Venturi meter requires a correction of the meter reading to account for the liquids effect. Currently, most correlations in existence were created for Orifice Plate Meters and are for general two-phase flow. However, due to no Venturi meter correlation being published before 1997 industry was traditionally forced to use these Orifice Plate Meter correlations when faced with a Venturi metering wet gas flows. This paper lists seven correlations, two recent wet gas Venturi correlations and five older Orifice Plate general two-phase flow correlations and compares their performance with new independent data from the NEL Wet Gas Loop with an ISA Controls Ltd. Standard specification six inch Venturi meter of 0.55 beta ratio installed. Finally, a new correlation is offered.  相似文献   

7.
From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flow transients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transient is calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineering demand.  相似文献   

8.
    
When the oil field has been exploited by long-term water-flooding, it will be in high water-content stage of production. However, it is a great challenge for high-water-content measurement due to oil droplets extremely dispersed in the water. In this paper, we developed a phase-isolation based method for high-water-content oil-water two-phase flow measurement. Phase-isolation was realized by axial-flow swirler to concentrate scattered and random oil droplets into the pipe center and change the inlet flow pattern into a particular annular flow before measuring. Owing to the axisymmetric velocity and phase distribution, the electromagnetic flow meter avoided the effect of random distribution of insulating phase, and then had a good measurement performance for total volume flow rate. Furthermore, we respectively studied using axial pressure drop, radial pressure drop and the ratio of the two pressure drops to measure water content. The results showed that the ratio of the two pressure drops not only improves the resolution of oil and water, but also effectively reduces the impact of error transfer. In the dual-parameter measurement experiment, the relative errors of total volume flow rate and water content were almost within ±5%.  相似文献   

9.
为适应核反应堆堆芯冷却剂流量测量的需要,开发研制了新型低速涡轮流量变送器,按流量信号输出不同,分别为磁感应模拟信号输出和数字开关量输出低速涡轮流量变送器。实际标定和应用表明,低速涡轮流量变送器的精度和重复性是好的,相对误差的均方根为1.0%,使用寿命长,阻力小,线性范围宽。  相似文献   

10.
吸收药在线实时计量是实现火药制造工艺连续化、自动化的前提。根据吸收药浆料的特性,选择了微波浓度仪和电磁流量计,分别对它们的性能和工作原理进行了阐述,多次测量了吸收药浆料的浓度和流量,并且利用PLC系统计算了浆料的绝干量。结果表明,该计量系统性能好,测量误差小,能够满足火药制造工艺连续化、自动化的需要。  相似文献   

11.
    
The alternating appearance of elongated bubbles and liquid slugs of slug flow in the pipe causes severe pressure fluctuation. As a result, measuring the flow rate of the slug flow with the throttling unit based differential pressure method is difficult. This paper investigates a new swirler-based flow measurement method in slug flow. The swirler converts the slug flow into a swirling annular flow, and the differential pressure method is used to measure the flow rate. The influences of gas and liquid flow rates on the differential pressure ΔPX across the swirler as well as its downstream axial differential pressure ΔPZ are investigated. ΔPX0.5 increases linearly as the liquid mass flow rate increases, and the slope of the curve increases as the gas mass flow rate increases. The influence of gas mass flow rate on ΔPX0.5 is comparable to that of liquid mass flow rate on ΔPX0.5. ΔPZ0.5 increases linearly with increasing gas/liquid mass flow rate, and the slope of the curve of ΔPZ0.5 with ml differs slightly from the slope of the curve in single-phase water conditions. Based on the research presented above, new empirical correlations of mass flow rate based on ΔPX and ΔPZ are established respectively. The superficial liquid velocity ranges from 0.6 to 2 m per second, while the superficial gas velocity ranges from 2 to 6 m per second. If the gas mass flow rate and ΔPX are known, the relative error of liquid mass flow is less than 3%. The relative error of the gas mass flow rate is less than 10% if the liquid mass flow rate and ΔPX are given. The calculation accuracy of the flow measurement model using ΔPX is better than the calculation accuracy of the flow measurement model using ΔPZ.  相似文献   

12.
    
This paper proposes a novel flow pattern identification method using ultrasonic echo signals within the pipe wall. A two-dimensional acoustic pressure numerical model is established to investigate the ultrasonic pulse transmission behavior between the wall-gas and wall-liquid interface. Experiments were also carried out at a horizontal air-water two-phase flow loop to measure the ultrasonic echo pulse signals of stratified flow, slug flow, and annular flow. It is interesting to find that the attenuation of the ultrasonic pulse at the wall-liquid interface is faster than the attenuation at the wall-gas interface. An RBF neural network is constructed for online flow pattern identification. The normalized envelop area and the area ratios of the echo spectrum are selected as the input parameters. The results show that the stratified flow, slug flow, and annular flow can be identified with an accuracy of 94.0%.  相似文献   

13.
本文介绍弯管流量计确定标定数据的实验方法,尝试新的计算方法,得到较精确的标定数据.  相似文献   

14.
    
The flow control valve is able to deliver an almost constant discharge which is irrespective to the pressure fluctuations in a pressurized network. In this paper the design of a flow control device for incompressible flow is studied. The design criteria of the device are extended for wider discharge values up to Q = 0.6 l/s and differential pressure limits up to Δp = 20 m. In this regard, experiments were performed on cylindrical orifice device to obtain the associated discharge formula, based on which, the initial valve design was obtained. Then, the performance of the flow control device was enhanced according to analyzing the experimental results of the initial design and modifying the float shape line. A step-by-step design framework was then proposed based on which the improved design criteria were achieved for the design discharges of Q = 0.4 l/s with 1≤Δp (m)≤7, Q = 0.6 l/s with 1≤Δp (m)≤7, and Q = 0.6 l/s with 2.6≤Δp (m)≤20. According to the experimental results, average discharge values of 0.391 l/s, 0.625 l/s, and 0.568 l/s, with the associated relative errors of 2.2%, 4.2%, and −5.3% were obtained in comparison with the design values.  相似文献   

15.
微通道中液氮的流动沸腾——两相流动压降分析   总被引:3,自引:0,他引:3  
对液氮在直径为0.531 mm,加热长度为250mm的圆管中的流动沸腾压降和传热特性进行研究.作为第一部分,主要对微通道中液氮的两相流动压降进行试验研究与分析.结果表明:在核态沸腾起始时,质量流量迅速降低,而压降突然增大,并伴随着明显的温度滞后,幅度约为4.0~5.0 K.由于压降很大,在微通道内液氮的两相流动中会出现闪蒸,从而对质量干度产生重要影响.最后,利用均相模型和三个两相流动模型(L-M模型,Chisholm B系数模型和Friedel模型)对微通道沿程压降进行分析和比较.不同于常规通道的是,均相模型可以很好地预测压降试验结果,而三个两相流动模型的预测偏差较大,这是由于在微小通道中的高速流动情况下,汽相和液相混合比较均匀;同时液氮的液汽密度比很小,这也有利于均相模型的预测.  相似文献   

16.
    
Within the framework of a research project regarding investigations on a high-pressure Coriolis mass flow meter (CMF) a portable flow test rig for traceable calibration measurements of the flow rate (mass - and volume flow) in a range of 5 g min−1 to 500 g min−1 and in a pressure range of 0.1 MPa to 85 MPa was developed. The measurement principle of the flow test rig is based on the gravimetrical measuring procedure with flying-start-and-stop operating mode. Particular attention has been paid to the challenges of temperature stability during the measurements since the temperature has a direct influence on the viscosity and flow rate of the test medium. For that reason the pipes on the high-pressure side are double-walled and insulated and the device under test (DUT) has an enclosure with a separate temperature control. From the analysis of the first measurement with tap water at a temperature of 20 °C and a pressure of 82.7 MPa an extensive uncertainty analysis has been carried out. It was found that the diverter (mainly due to its asymmetric behaviour) is the largest influence factor on the total uncertainty budget. After a number of improvements, especially concerning the diverter, the flow test rig has currently an expanded measurement uncertainty of around 1.0% in the lower flow rate range (25 g min−1) and 0.25% in the higher flow rate range (400 g min−1) for the measurement of mass flow. Additional calibration measurements with the new, redesigned flow test rig and highly viscous base oils also indicated a good agreement with the theoretical behaviour of the flow meter according to the manufacturers׳ specifications with water as test medium. Further improvements are envisaged in the future in order to focus also on other areas of interest.  相似文献   

17.
本文简要介绍了流量测量的重要作用.从动态流量的测量、纯水传动中的流量测量和流量计的安装等方面,介绍了现今流量测量的一些主要发展动态.  相似文献   

18.
    
The uncertainty of the orifice-plate discharge coefficient given by the Reader-Harris/Gallagher (1998) Equation has been calculated taking account of the uncertainty of the data on which it is based and of the variability in manufacture permitted by ISO 5167–2. This work has shown that using the correct method to determine the uncertainty in ISO 5167-2 has made an insignificant difference to the value given in the standard. However, in other similar cases where the uncertainty for an artefact is based on data from other similar artefacts the uncertainty values obtained by the correct method may be significantly different from those by the incorrect method.  相似文献   

19.
    
Multiphase flow metering is a major focus for oil and gas industries. The performance of a modified version of a close coupled slotted orifice plate and swirl flow meter for multiphase flow was evaluated to provide further development of a new type of multiphase flow meter. The slotted orifice provides well homogenized flow for several pipe diameters downstream of the plate. This characteristic provides a homogeneous mixture at the inlet of the swirl meter for a wide range of gas volume fractions (GVF) and flow rates. In order to evaluate the performance of the designed flow-meter, its response was investigated for varying pressures and water flow rates. The proper correlations were established to provide high accurate two-phase flow measurements. The new proposed approach provides the GVF measurement with less than ±0.63% uncertainty for GVF range from 60% to 95%.  相似文献   

20.
    
To identify conveniently multiphase flow regimes in subsea pipeline-risers, we study in this paper experimentally two-phase flows in a 1657 m long pipeline with an S-shaped riser to simulate field experiment, within a wide range of gas and liquid velocities. Three flow regimes, namely severe slugging, transitional flows, and stable flows, are analyzed based on three differential pressure and one pressure signals at the top of the riser; comparatively speaking, the positions of these signals in the experimental system are similar to those of the sea level signals in industrial fields, which are easy and less expensive to obtain. The obtained signals are decomposed into six scales via a multi-scale wavelet analysis, and further four statistical parameters on each scale are extracted, including mean values, standard deviations, ranges, and mean values of absolute. We compared the effects of six SVM classifiers with different kernel functions on the recognition rate of flow regimes, and it is found the recognition rates of SVM classifier with quadratic and cubic kernel functions are the highest. Further, the principal component analysis is employed to reduce the dimension of statistical parameters and it indicates that the recognition rate tends to increase with the rising number of principal components from 1 to 6, and it remains constant if the principal component number is further increased. Moreover, The results suggest that the recognition rate obtained from the pressure difference between the top of the riser and the separator peaks, and then it comes that from the pressure signal at the top of the riser, and that for the pressure difference signal at the top of the riser is the least satisfying one. As for the optimal differential pressure signals between the top of the riser and the separator, the results show that the recognition rate increases rapidly from 70.2% to 90.4% when the sample duration rising from 2.3 s to 18.6 s, and when the sample duration exceeds 74.4 s, the recognition rate exceeds 92.9% and remains unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号