首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Underwater images play an essential role in acquiring and understanding underwater information. High-quality underwater images can guarantee the reliability of underwater intelligent systems. Unfortunately, underwater images are characterized by low contrast, color casts, blurring, low light, and uneven illumination, which severely affects the perception and processing of underwater information. To improve the quality of acquired underwater images, numerous methods have been proposed, particularly with the emergence of deep learning technologies. However, the performance of underwater image enhancement methods is still unsatisfactory due to lacking sufficient training data and effective network structures. In this paper, we solve this problem based on a conditional generative adversarial network (cGAN), where the clear underwater image is achieved by a multi-scale generator. Besides, we employ a dual discriminator to grab local and global semantic information, which enforces the generated results by the multi-scale generator realistic and natural. Experiments on real-world and synthetic underwater images demonstrate that the proposed method performs favorable against the state-of-the-art underwater image enhancement methods.  相似文献   

2.
光在水中传播时受到水的吸收和悬浮粒子散射作用,导致水下图像颜色失真、对比度低、可视性差。针对上述退化问题,该文提出一种基于蓝绿通道自适应色彩补偿水下图像增强方法。首先,该方法分析水下成像模型的特点,根据蓝、绿色通道均值在3通道均值和的占比,将水下场景深度划分3个等级,利用光衰减率特性自适应补偿色彩,实现多场景色彩校正。然后对色彩补偿后的图像划分暗调、中间暗调、中间亮调、亮调4个区域,利用暗区域映射函数将图像暗区域映射到亮区域,在提升对比度的同时抑制噪声的产生。最后采用双线性插值解决分块处理产生的区域块效应。真实水下数据集实验结果表明,与现有方法相比,该方法可以提升多种场景的水下图像质量。  相似文献   

3.
水介质的吸收和散射特性致使水下图像存在不同类型的失真,严重影响后续处理的准确性和有效性。目前有监督学习的水下图像增强方法依靠合成的水下配对图像集进行训练,然而由于合成的数据可能无法准确地模拟水下成像的基本物理机制,所以监督学习的方法很难应用于实际的应用场景。该文提出一种基于特征解耦的无监督水下图像增强方法,一方面,考虑获取同一场景下的清晰-非清晰配对数据集难度大且成本高,提出采用循环生成对抗网络将水下图像增强问题转换成风格迁移问题,实现无监督学习;另一方面,结合特征解耦方法分别提取图像的风格特征和结构特征,保证增强前后图像的结构一致性。实验结果表明,该方法可以在非配对数据训练的情况下,能够有效恢复水下图像的颜色和纹理细节。  相似文献   

4.
基于暗原色先验模型的水下彩色图像增强算法   总被引:1,自引:0,他引:1  
针对在水下环境中,光的散射和衰减导致水下光学成像质量严重下降,图像对比度低、颜色失真的问题,提出了一种暗原色先验和基于通道直方图量化的颜色校正算法相结合的图像增强新方法。对于待增强的水下彩色图像,首先建立水下光学图像成像模型,并利用优化与改进的暗原色先验算法对图像进行去模糊,然后通过分析R、G、B三通道的累积直方图,对去模糊后的彩色图像各通道灰度值进行量化,实现图像的颜色校正。实验结果表明,提出的方法可以有效地消除了由于光的散射造成图像的模糊,有效提高了水下图像的视觉效果,恢复水下图像的颜色平衡。  相似文献   

5.
水下图像往往会因为光的吸收和散射而出现颜色退化与细节模糊的现象,进而影响水下视觉任务。该文通过水下成像模型合成更接近水下图像的数据集,以端到端的方式设计了一个基于注意力的多尺度水下图像增强网络。在该网络中引入像素和通道注意力机制,并设计了一个多尺度特征提取模块,在网络开始阶段提取不同层次的特征,通过带跳跃连接的卷积层和注意力模块后得到输出结果。多个数据集上的实验结果表明,该方法在处理合成水下图像和真实水下图像时都能有很好的效果,与现有方法相比能更好地恢复图像颜色和纹理细节。  相似文献   

6.
戴声奎  张超  黄正暐  钟峥 《信号处理》2019,35(4):676-685
由于光在水中的吸收和散射,以及不同波长的光传播距离上的差异,水下图像严重受到对比度降低和颜色偏色的影响,因此色彩的白平衡校正是水下图像处理的一个关键技术。本文提出了一种新的无色恒常性原理(CLC:ColorLess Constancy)及白平衡方法。方法 首先将彩色图像转换到YCbCr颜色空间实现亮色分离,然后通过非线性方法检测色度分量,计算每个像素对应的色度权重,然后根据新的线性加权算法重新计算每个像素的色度,实现对图像中无色区域的保护,以及对偏色区域的色彩校正。与几种经典白平衡方法进行比较,CLC方法克服了传统方法易对无色区域产生不良偏色的缺点,取得了较好的视觉感知效果。 实验表明该算法复杂性低,鲁棒性好,说明了CLC白平衡算法的实用性,以及无色恒常性原理的科学性。   相似文献   

7.
Underwater images often show severe quality degradation due to the light absorption and scattering effects in water medium. This paper introduces a scene depth regularized underwater image dehazing method to obtain high-quality underwater images. Unlike previous underwater image dehazing methods that usually calculate a transmission map or a scene depth map using priors, we construct an exponential relationship between transmission map and normalized scene depth map. An initial scene depth is first estimated by the difference between color channels. Then it is refined by total variation regularization to keep structures while smoothing excessive details. An alternating direction algorithm is given to solve the optimization problem. Extensive experiments demonstrate that the proposed method can effectively improve the visual quality of degraded underwater images, and yields high-quality results comparative to the state-of-the-art underwater image enhancement methods quantitatively and qualitatively.  相似文献   

8.
Underwater image enhancement by wavelength compensation and dehazing   总被引:1,自引:0,他引:1  
Light scattering and color change are two major sources of distortion for underwater photography. Light scattering is caused by light incident on objects reflected and deflected multiple times by particles present in the water before reaching the camera. This in turn lowers the visibility and contrast of the image captured. Color change corresponds to the varying degrees of attenuation encountered by light traveling in the water with different wavelengths, rendering ambient underwater environments dominated by a bluish tone. No existing underwater processing techniques can handle light scattering and color change distortions suffered by underwater images, and the possible presence of artificial lighting simultaneously. This paper proposes a novel systematic approach to enhance underwater images by a dehazing algorithm, to compensate the attenuation discrepancy along the propagation path, and to take the influence of the possible presence of an artifical light source into consideration. Once the depth map, i.e., distances between the objects and the camera, is estimated, the foreground and background within a scene are segmented. The light intensities of foreground and background are compared to determine whether an artificial light source is employed during the image capturing process. After compensating the effect of artifical light, the haze phenomenon and discrepancy in wavelength attenuation along the underwater propagation path to camera are corrected. Next, the water depth in the image scene is estimated according to the residual energy ratios of different color channels existing in the background light. Based on the amount of attenuation corresponding to each light wavelength, color change compensation is conducted to restore color balance. The performance of the proposed algorithm for wavelength compensation and image dehazing (WCID) is evaluated both objectively and subjectively by utilizing ground-truth color patches and video downloaded from the Youtube website. Both results demonstrate that images with significantly enhanced visibility and superior color fidelity are obtained by the WCID proposed.  相似文献   

9.
光在水下传播时由于受到水体吸收和散射作用的影响,导致水下图像质量严重退化。为了有效去除色偏和模糊,改善水下图像质量,该文提出一种基于背景光修正成像模型的水下图像复原方法。该方法基于对雾天图像的观察,提出了水下图像背景光偏移假设,并基于此建立背景光修正成像模型;随后使用单目深度估计网络获得场景深度的估计,并结合背景光修正的水下成像模型,利用非线性最小二乘拟合获得水下偏移分量的估计值从而实现水下图像去水;最后优化去水后的含雾图像的透射率,并结合修正后的背景光实现图像复原。实验结果表明,该文方法在恢复水下图像颜色和去除散射光方面效果良好。  相似文献   

10.
Due to the absorption and scattering effects of the water, underwater images tend to suffer from many severe problems, such as low contrast, grayed out colors and blurring content. To improve the visual quality of underwater images, we proposed a novel enhancement model, which is a trainable end-to-end neural model. Two parts constitute the overall model. The first one is a non-parameter layer for the preliminary color correction, then the second part is consisted of parametric layers for a self-adaptive refinement, namely the channel-wise linear shift. For better details, contrast and colorfulness, this enhancement network is jointly optimized by the pixel-level and characteristic-level training criteria. Through extensive experiments on natural underwater scenes, we show that the proposed method can get high quality enhancement results.  相似文献   

11.
受水下场景中有机物和悬浮颗粒的影响,水下图像存在对比度低、颜色失真和细节丢失等问题。同时,水下场景中通常有人工光源存在,造成图像光照不均。传统基于图像去雾的方法用于水下图像复原时效果欠佳,为充分考虑水对光的吸收和散射作用,近期提出了新的水下成像模型和图像复原方法。但是这些方法未考虑红通道影响,导致估计的散射比偏大;另外,也未考虑人工光源的影响,导致估计的背景光过大。针对这些问题,该文提出一套有效的水下图像清晰化方案。首先,通过设置阈值确定是否将红通道信息用于暗通道计算,并将反映人工光源影响的饱和度指标用于散射比估计,以减小人工光源的影响。由此,提出了基于红通道预判和饱和度指标的暗通道计算方法。然后,根据三通道衰减系数比估计每个通道的透射率,可弥补目前很多方法假设蓝绿通道透射率一致的缺陷。最后,利用Shades of Gray算法估计环境光,并结合新的水下成像模型得到复原图像。实验结果表明,该文算法可显著提升图像的对比度,得到颜色自然、细节清晰的复原图像。  相似文献   

12.
由于光在水下传播会发生吸收和散射,导致采集 的水下图像出现模糊、对比度低、色偏、光照不 均匀等问题。针对以上问题,提出了一种改进的伽马校正与多尺度融合的水下图像增强算法 。首先基于G 通道对R和B通道进行补偿,并对RGB 三通道进行直方图拉伸后使用灰度世界(Gray World) 算法得到颜 色校正图像;然后使用改进的伽马函数改善颜色校正后图像光照不均匀问题,得到光照均匀 图像,并进 行归一化处理;再对光照均匀图像使用限制对比度的自适应直方图均衡化(contrast limite d adaptive histogram equalization,CLAHE)算法得到对比度提升图像;最后采用多尺度融 合算法对以上得出的3幅图 片进行融合,得出增强图像。实验结果表明,提出的算法对不同水下环境的图像均有较好的处理 效果,图像质量评价指标得到明显提高。  相似文献   

13.
Due to the light absorption and scattering, captured underwater images usually contain severe color distortion and contrast reduction. To address the above problems, we combine the merits of deep learning and conventional image enhancement technology to improve the underwater image quality. We first propose a two-branch network to compensate the global distorted color and local reduced contrast, respectively. Adopting this global–local network can greatly ease the learning problem, so that it can be handled by using a lightweight network architecture. To cope with the complex and changeable underwater environment, we then design a compressed-histogram equalization to complement the data-driven deep learning, in which the parameters are fixed after training. The proposed compression strategy is able to generate vivid results without introducing over-enhancement and extra computing burden. Experiments demonstrate that our method significantly outperforms several state-of-the-arts in both qualitative and quantitative qualities.  相似文献   

14.
针对水下图像由于光吸收、后向散射等因素导致的严重色偏、细节丢失等问题,该文提出一种基于多尺度级联网络的水下图像增强方法。针对单一网络特征利用不全面导致的图像梯度消失问题,该方法通过级联多尺度原始图像与相应的特征图像,以获得更优异的细节保持效果,并实现从较浅层到较深层快速预测残差的能力。此外,引入联合密集网络块和递归块,通过特征重用有效解决多尺度网络参数过多的问题。为有效解决单一损失造成的图像细节恢复不均的问题,提出Charbonnier和结构相似度(SSIM)联合损失函数。经仿真实验分析,所提网络在处理水下图像严重色偏、细节丢失等方面都取得了显著的效果。  相似文献   

15.
基于颜色失真去除与暗通道先验的水下图像复原   总被引:1,自引:0,他引:1  
水下图像成像过程与雾天图像虽然类似,但因水对光的选择性吸收和光的散射作用,水下图像存在颜色衰减并呈现蓝(绿)色基调,传统的去雾方法用于水下图像复原时效果欠佳。针对这类方法出现的缺点,该文根据先去除颜色失真后去除背景散射的思路,提出一种新的水下图像复原方法。结合光在水中的衰减特性,提出适用于水下图像的颜色失真去除方法,并利用散射系数与波长的关系修正各通道透射率;另外,该文改进的背景光估计方法可有效避免人工光源、白色物体、噪声等影响。实验结果证明,该文方法在恢复场景物体原本颜色和去除背景散射方面效果良好。  相似文献   

16.
Underwater captured images often suffer from color cast and low visibility due to light is scattered and absorbed while it traveling in water. In this paper, we proposed a novel method of color correction and Bi-interval contrast enhancement to improve the quality of underwater images. Firstly, a simple and effective color correction method based on sub-interval linear transformation is employed to address color distortion. Then, a Gaussian low-pass filter is applied to the L channel to decompose the low- and high-frequency components. Finally, the low- and high-frequency components are enhanced by Bi-interval histogram based on optimal equalization threshold strategy and S-shaped function to enhancement image contrast and highlight image details. Inspired by the multi-scale fusion, we employed a simple linear fusion to integrate the enhanced high- and low-frequency components. Comparison with state-of-the-art methods show that the proposed method outputs high-quality underwater images with qualitative and quantitative evaluation well.  相似文献   

17.
多光谱成像是一项非常有前景的图像高保真获取与再现技术,近年来在水下物体颜色还原的应用中也受到的极大的需求和关注。然而,不同于空气中的物体的成像过程,在水下成像过程中,当光通过水而进行传播,光被水体严重吸收和散射,导致图像变暗,在其光谱和颜色方面发生模糊和扭曲。文中讨论的是基于水下图像的水衰减系数的校准和其多光谱图像的光谱重构。首先在不同的距离处获取物体的图像,提出了基于不同距离的图像进行水体衰减系数的校准并恢复原始图像的技术;在此基础上,分析并导出满足系数校准和图像复原所需的在不同距离获取到的最少的原始图像个数。最后,通过比较复原的水下图像与空气中获取的彩色图像,实验结果证明:文中提出的技术能够对水下光谱图像的进行精确颜色复原,所有测试图像的平均相对残留误差仅为5.87%。  相似文献   

18.
由于水体环境中光的吸收与散射,导致采集的水下图像存在颜色失真、亮度不均、对比度低等缺点。针对以上缺点,提出了基于亮度校正与多空间转换的水下图像增强方法。首先采用色彩平衡算法对退化图像进行颜色校正;然后将色彩校正的图像从红-绿-蓝(red-green-blue,RGB)空间转换为色调-饱和度-亮度(hue-saturation-value,HSV)空间,用构造出新的二维伽马函数处理V通道,再转回RGB空间;最后对颜色校正图像和亮度校正图像进行加权融合,并将融合图像从RGB空间转换为LAB空间,用限制对比度自适应直方图均衡化算法处理L通道,再转回RGB空间,便得到最终的增强图像。为验证本文算法的有效性,采用主观视觉效果和3种客观指标进行验证。结果表明,本文算法能够有效地校正图像亮度,提高图像清晰度。  相似文献   

19.
针对水下图像纹理模糊和色偏严重等问题,提出了一种融合深度学习与多尺度导向滤波Retinex的水下图像增强方法。首先,将陆上图像采用纹理和直方图匹配法进行退化,构建退化水下图像失真的数据集并训练端到端卷积神经网络(convolutional neural network,CNN) 模型,利用该模型对原始水下图像进行颜色校正,得到色彩复原后的水下图像;然后,对色彩复原图像的亮度通道,采用多尺度Retinex(multi-scale Retinex,MSR) 方法得到纹理增强图像;最后,融合色彩复原图像中的颜色分量和纹理增强图像得到最终水下增强图像。本文利用仿真水下图像数据集和真实水下图像对提出方法进行性能测试。实验结果表明,所提方法的均方根误差、峰值信噪比、CIEDE2000和水下图像质量评价指标分别为0.302 0、17.239 2 dB、16.878 4和4.960 0,优于5种对比方法,增强后的水下图像更加真实自然。本文方法在校正水下图像颜色失真的同时,能有效提升纹理清晰度和对比度。  相似文献   

20.
水下光学图像处理是水下设备完成深海探测和作业任务的重要依据.在简述了水下光学图像处理的研究背景、意义及其研究热点的基础上,该文从水下图像光照因素改善与颜色校正两个方面,详细综述了水下成像技术和水下图像清晰化算法的研究进展,重点论述了基于成像模型的图像复原方法和图像增强方法两个最为活跃的研究方向的研究现状.根据水下光学图...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号