首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The velocity,pressure and temperature distributions of the flow in the gap between hydro-viscous drive friction disks are the key parameters in the design of hydro-viscous drive and angular velocity controller.In the previous works dealing with the flow in the gap between disks in hydro-viscous drive,few authors considered the effect of Coriolis force on the flow.The object of this work is to investigate the flow with consideration of the effects of centrifugal force,Coriolis force and variable viscosity.A simplified mathematical model based on steady and laminar flow is presented.An approximate solution to the simplified mathematical model is obtained by using the iteration method assuming that the fluid viscosity remains constant.Then the model considering the effect of variable viscosity is solved by means of computational fluid dynamics code FLUENT.Numerical results of the flow are obtained.It is found that radial velocity profile diverges from the ideal parabolic curve due to inertial forces and tangential velocity profile is nonlinear due to Coriolis force,and pressure has two possible solution branches.In addition,it is found that variable viscosity plays an important role on pressure profiles which are significantly different from those of fluid with constant viscosity.The experimental device designed for this work consists of two disks,and one of them is fixed.Experimental pressure and temperature of the flow within test rig are obtained.It is shown that the trend of numerical results is in agreement with that of experimental ones.The research provides a theoretical foundation for hydro-viscous drive design.  相似文献   

2.
In this paper, a small displacement-type magnetorheological grease (MRG) damper based on disk squeeze mode is proposed. The squeeze flow differential equation is obtained. The Navier slip condition is considered on the surfaces and the boundary compatible condition is established. The radial velocity profiles and the radial pressure distributions are derived respectively, and the mathematical stress expression is calculated. To verify rationality of analytical method, the MRG damper is designed and fabricated according to the technical requirements of an engine vibration isolation system. The experimental damping force from MTS870 Electro-hydraulic Servo with sine wave excitation shows that the proposed analytical method is feasible and provides the reference value for designing MRG damper based on disk squeeze mode.  相似文献   

3.
This paper describes the design and implementation of a two-phase flow meter which can be used in solids-in-water two phase pipe flows to measure the in-situ volume fraction distributions of both phases, the velocity profiles of both phases and the volumetric flow rates for both phases. The system contains an Impedance Cross Correlation (ICC) device which is used in conjunction with an Electromagnetic Velocity Profiler (EVP). Experimental results were obtained for the water and solids velocity and volume fraction profiles in upward inclined flow at 30° to the vertical, in which highly non-uniform velocity and volume fraction profiles occur.  相似文献   

4.
This paper describes an electromagnetic flow meter for velocity profile measurement in single phase and multiphase flows with non-uniform axial velocity profiles. A Helmholtz coil is used to produce a near-uniform magnetic field orthogonal to both the flow direction and the plane of an electrode array mounted on the internal surface of a non-conducting pipe wall. Induced voltages acquired from the electrode array are related to the flow velocity distribution via variables known as ‘weight values’ which are calculated using finite element software. Matrix inversion is used to calculate the velocity distribution in the flow cross section from the induced voltages measured at the electrode array. This paper presents simulations and experimental results including, firstly the effects of the velocity profile on the electrical potential distribution, secondly the induced voltage distribution at the electrode pair locations, and thirdly the reconstructed velocity profile calculated using the weight values and the matrix inversion method mentioned above. The flow pipe cross-section is divided into a number of pixels and, in the simulations, the mean flow velocity in each of the pixels in single phase flow is calculated from the measured induced voltages. Reference velocity profiles that have been investigated in the simulations include a uniform velocity profile and a linear velocity profile. The results show good agreement between the reconstructed and reference velocity profiles. Experimental results are also presented for the reconstructed velocity profile of the continuous water phase in an inclined solids-in-water multiphase flow for which the axial water velocity distribution is highly non-uniform. The results presented in this paper are most relevant to flows in which variations in the axial flow velocity occur principally in a single direction.  相似文献   

5.
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling.  相似文献   

6.
All positive displacement pumps produce a pulsating flow. The present paper reports the experimental measurement of steady flow pulsations in the outlet of the internal wheeled pump. In the measured flow, the manufacturing tolerance are responsible of part of the spectra of the whole pulsation. Time-Resolved Particle Image Velocimetry technique has been used for this purpose. The flow pulsation measurement from a direct visualization of the velocity profile was carried out. The flow rate signal is derived from ad-hoc integration algorithm of the radial velocity profile, where the area discretization is a constant parameter that is relevant to minimize PIV errors by velocity gradients regions near the wall. Spectrographic analysis on the experimental data reveled low frequency components related with manufacturing tolerances. Measurements of this non-invasive procedure are compared with detailed CFD numerical results obtained from an improved gerotor model where manufacturing tolerances have been included. To be compared, cross-power spectral density analysis has been applied. The results reported in the paper show a method to provide a fast non-invasive flow pulsation measurement not only for pumps but also could be extended to compare aging effects of other kind of fluid power devices.  相似文献   

7.
The confine and heat are remarkable features in building fire research, as well as is a barrier for flow velocity profiles measurement, which the general method is unsuitable for this experimental environment. Therefore, this paper develops a measurement method for the acquisition of the thermal smoke flow velocity profiles in the fire building experiment. Firstly, we utilize the smoke itself particle distribution to replace the manual track particles in which reduce the complexity of the measurement method for fire experiments system. Secondly, we optimize the non-uniform distribution of smoke soot particle and utility the smoke stratification characteristics basing on the optical flow technology. The four optimized methods were compared to acquire reasonable smoke velocity distributions. Finally, we take advantage of filter post-process method to smooth the smoke velocity profiles in the main transportation direction. Moreover, a series of experiments and simulations show the feasibility of this image-based method in which the pre-process, optical calculation and smooth methods were established to denote reasonably the smoke flow velocity gradient and inclined upward trend nearby the corridor open. Meanwhile, it is not only in acquiring two-dimension smoke field velocity, while also can fulfill the other particle flow movement.  相似文献   

8.
Radial variation of the gas holdup and mean holdups were investigated in a 0.160 m i.d. bubble column using electrical resistance tomography with two axial locations (Plane 1 and Plane 2). In all the experiments tap water was used the liquid phase and air was the gas phase. Superficial gas velocity was varied from 0.02 to 0.25 m/s, and superficial liquid velocity varied from 0 to 0.011 m/s. The effect of liquid velocity on the mean holdups and radial gas holdup distribution was discussed. The experimental results showed the liquid velocity slightly influence the mean holdup and radial hold-ups distribution in the operating condition, and the liquid flow can improve the transition gas velocity for the homogeneous regime to heterogeneous regime. Meanwhile the mean gas holdups as a function of gas velocity were derived from using differential pressure method and electrical resistance tomography method. The agreement between results obtained by these two methods is generally very good in the homogeneous regime. But in the transition regime and heterogeneous regime, results with ERT are slightly larger than one with the differential pressure method. According to the experimental results, a correlation for the centreline holdup is obtained.  相似文献   

9.
为了探究使用计算流体力学(Computational Fluid Dynamics, CFD)评估离心血泵性能时采用非定常模拟方法的必要性,对美国食品药品监督管理局(Food and Drug Administration, FDA)提供的标准模型进行数值仿真,分别使用定常单坐标系(Single Reference Frame, SRF)与非定常动静区域耦合的滑移网格模拟方法对4个工况进行模拟并与实验结果进行对比。 结果表明,定常SRF预测的泵内速度场与实验结果误差在4%以内;非定常滑移网格的误差为2%以内,且确定系数相较定常SRF平均高0.4。对于溶血系数的计算,两种方法均未给出准确的定量预测。 因此对于血泵流场的计算,非定常滑移网格模型与定常SRF模型相比,有一定的准确度上的提升,但并不明显。  相似文献   

10.
为解决径向水平井钻进过程中破岩效率和自进能力的问题,设计了一种自进式旋转射流钻头。运用数值模拟方法,采用RNG k-ε湍流模型对所设计射流钻头的内外流场进行了三维流动特性分析,并分析了射流钻头结构参数对喷嘴流场特性的影响规律,进一步优化了自进式旋转射流钻头。结果表明,自进式旋转射流喷嘴外流场的轴心速度在喷嘴中心线上的速度最大,随着径向半径的增大,轴向速度迅速减小;切向速度沿喷嘴径向呈现出经典的"N"形分布,有利于增大射流破碎岩石的深度和破碎面积;径向速度呈轴对称分布,存在明显的漫流层,有助于岩屑的脱离;自进式旋转射流钻头导向叶轮的螺距和导叶数量,对射流速度有着重要的影响;喷嘴直径对射流流场特性的影响较大。经过优化,得到射流钻头的叶轮螺距16mm,导叶数为2,喷嘴直径为1mm。  相似文献   

11.
用粒子图像测速技术(Particle image velocimetry,简称PIV)对带有Rushton桨叶的,无挡板搅拌槽内的流场进行研究。在叶轮转速240 r/min下,流动的雷诺数Re=1 527时,获取了桨叶处以及桨叶转过5个不同角度处的粒子图像。在对粒子图像进行处理和计算后,得到了相平均速度场和系综平均速度场,并给出了速度分布剖面图。结果表明,所研究的Rushton桨搅拌槽内径向喷射流动沿桨叶垂直方向是非对称的,而是向下方倾斜。在桨叶附近,径向流动速度高。随着流动远离桨叶,径向速度在降低。因此径向喷射流动作用就相当于自由射流:叶轮桨叶喷射出的流体进入周围大量低速运动的流体中,卷吸周围流体,并沿轴向和径向扩散,从而使更多的流体参与混合和反应。所作研究对于深入了解搅拌槽内流场结构具有实际意义。  相似文献   

12.
The dynamic response of the cocoa butter shear crystallization process to a step reduction in temperature of a two stage shear crystallizer is investigated by measuring the pulsed ultrasound Doppler based velocity profile (UVP) and pressure drop (PD) in a pipe section. In addition, the velocity of sound, attenuated amplitude of the transmitted signal and temperature are continuously recorded. The temporal variation in rheological properties such as the apparent viscosity at different shear rates and the corresponding radial position in the pipe are determined by fitting the velocity profile and pressure drop to the power law rheological model. The linear dependence of sound velocity on the solid fat content (SFC) in the cocoa butter crystal suspension previously determined using the nuclear magnetic resonance technique is used to characterize crystallization. The cocoa butter crystal suspension is found to be shear thinning, the value of the power law exponent decreasing with increase in SFC. Newly developed software is used to integrate on-line measurement of flow profiles, pressure difference, temperature, velocity of sound and the attenuated amplitude of the transmitted signal. The software also calculates velocity profiles using spectral signal analysis, determines the rheological properties, and provides a graphical user interface and tools for data visualization. It is demonstrated that the cocoa butter shear crystallization process can be monitored using the UVP–PD technique.  相似文献   

13.
In this work, the radial profiles of the particles velocity in gas-solid fluidized beds were measured using two techniques: (1) an advanced optical fiber probe, an invasive technique, and (2) radioactive particle tracking (RPT), a noninvasive technique. Two gas-solid fluidized bed columns of 0.14 and 0.44 m inside diameters were used to estimate the radial profile of the particles velocity. The particle velocity was measured at different operating conditions and axial heights. It was found that the implementation of the noninvasive radioisotope particle tracking (RPT) technique was able to successfully guide the measurement of the radial profile of the particle velocity using the optical fiber probe technique. The average inversion point of the radial particle velocity, from positive to negative, was identified from the measurements using both techniques for different operating conditions and axial heights.  相似文献   

14.
Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.  相似文献   

15.
The flow behaviour in a vaned radial diffuser is governed by a number of non-linearly related parameters. These parameters allow theoretical solutions with some simplifying assumptions. In this paper potential flow solutions have been obtained to predict the velocity distribution in blade-to-blade plane. The singularity and finite difference methods have been used to solve the governing equations. The predicted results have been compared with experimentally obtained velocity profiles. The two results compare well in the middle of the diffuser channel.  相似文献   

16.
The objective of the present study is to analyze the fluid flow with moving boundary using a finite element method. The algorithm uses a fractional step approach that can be used to solve low-speed flow with large density changes due to intense temperature gradients. The explicit Lax-Wendroff scheme is applied to nonlinear convective terms in the momentum equations to prevent checkerboard pressure oscillations. The ALE (Arbitrary Lagrangian Eulerian) method is adopted for moving grids. The numerical algorithm in the present study is validated for two-dimensional unsteady flow in a driven cavity and a natural convection problem. To extend the present numerical method to engine simulations, a piston-driven intake flow with moving boundary is also simulated. The density, temperature and axial velocity profiles are calculated for the three-dimensional unsteady piston-driven intake flow with density changes due to high inlet fluid temperatures using the present algorithm. The calculated results are in good agreement with other numerical and experimental ones.  相似文献   

17.
Numerous schemes have been used for measuring hemodynamic properties of deeply lying arteries; however, all have their limitations. This paper describes a new relatively nontraumatic intravenous approach that uses a catheter in connection with a pulsed ultrasonic Doppler velocity meter (PUDVM) and an echo track. The catheter was initially tested in a hydraulic model system for calibration of velocity and flow parameters. Lately, the catheter has permittted measurements of local instantaneous blood velocity, flow, and wall motion characteristics in adult Beagle dogs in the abdominal aorta and iliac artery. Evaluation studies have been conducted to compare the catheter-tip recordings with an independent method for measuring blood flow and wall motion. Coupling of this catheter-tip device with the PUDVM and echo track provides chronic measurements of hemodynamic parameters in these deep vessels which were virtually impossible to obtain previously. This technique may prove useful in monitoring vessel pathology longitudinally as well as in basic experimental situations requiring flow and arterial wall mechanical properties.  相似文献   

18.
The sensitivity of orifice plate flow meters to the quality of the approaching flow continues to be a cause for concern in flow metering. The distortions caused by pipe fittings such as valves, bends, compressors and other devices located upstream of the orifice plate can lead to non-standard velocity profiles and give errors in measurement. The design of orifice plate meters that are independent of the initial flow conditions of the upstream is a major goal in flow metering. Either using a long straight pipe, or a flow conditioner upstream of an orifice plate, usually achieves this goal.The effect of a fractal flow conditioner for both standard and non-standard flow conditions was obtained in experimental work and also using simulations. The measurement of mass flow rate under different conditions and different Reynolds numbers was used to establish a change in discharge coefficient relative to a standard one. The experimental results using the fractal flow conditioner show that the combination of an orifice plate and a fractal flow conditioner is broadly insensitive to upstream disturbances.The simulation results also show that the device can be used as a part of a flow metering package that will considerably reduce installation lengths. Previous work with orifice plates has shown that a combination of flow conditioner and orifice plate was promising. The results of using a combination of the fractal flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show that this package can preserve the accuracy of metering up to the level required in the Standards.  相似文献   

19.
Thin-plate weirs are widely used to monitor the flow rate in open channels. Thereby, three dimensional (3D) modeling of the flow over a weir in an open channel can be considered as one of the main topics in hydraulic science. In this study, the flow over a sharp-crested v-notch weir (SCVW) is simulated by a 3D numerical model. Laboratory experiments were conducted to monitor and measure the behavior of the SCVW in practice. Finally, the simulated velocity distributions, water surface profiles, and hydraulic jump were compared with those of the experimental data. Due to the turbulent nature of the flow over the SCVW, a Reynolds stress model (RSM) and three types of the k–ϵ turbulence models with the fractional volume of fluid technique (VOF) were used in the analysis. In this respect, the two-phase solution method and dense mesh were used in generating the simulation domain. Results indicated that the RSM exhibited higher accuracy in defining the velocity distribution, complex flow pattern, and predicting the hydraulic jump formation downstream of the SCVW.  相似文献   

20.
Microparticle image velocimetry (μPIV) is used to measure the grease velocity profile in small seal-like geometries and the radial migration of contaminant particles is predicted. In the first part, the influence of shaft speed, grease type, and temperatures on the flow of lubricating greases in a narrow double restriction sealing pocket is evaluated. Such geometries can be found in, for example, labyrinth-type seals. In a wide pocket the velocity profile is one-dimensional and the Herschel-Bulkley model is used. In a narrow pocket, it is shown by the experimental results that the side walls have a significant influence on the grease flow, implying that the grease velocity profile is two-dimensional. In this area, a single empirical grease parameter for the rheology is sufficient to describe the velocity profile.

In the second part, the radial migration of contaminant particles through the grease is evaluated. Centrifugal forces acting on a solid spherical particle are calculated from the grease velocity profile. Consequently, particles migrate to a larger radius and finally settle when the grease viscosity becomes large due to the low shear rate. This behavior is important for the sealing function of the grease in the pocket and relubrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号