首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
在中国石油兰州化工研究中心75 kg/h聚丙烯中试装置上进行了进口Basell ZN 111-4催化剂的聚合反应性能评价实验。结果表明,ZN 111-4催化剂具有较高的聚合活性和氢调敏感性,产品的等规度可在较大范围内调整,催化剂活性释放平稳,抗杂质干扰能力较强。在催化剂流量和质量浓度分别为0.18 mL/min及100 g/L,n(氢气)/n(丙烯)为0.004,m(三乙基铝)/m(给电子体)为1.08的工艺条件下,当丙烯的含水量为3.54 mg/L时,ZN 111-4催化剂的活性[m(聚丙烯)/m(催化剂)]高达31 480。  相似文献   

2.
以MgCl_2和钛酸四丁酯为原料,采用析出法制备了溶解析出型Ziegler-Natta催化剂,利用粒径分布和溶体流动指数测定等方法,通过乙烯聚合考察了催化剂制备条件对催化剂和聚合物性能的影响。实验结果表明,镁钛配合物质量浓度为100~500 g/L时制备的催化剂的活性基本为(1.6~1.8)×10~4 g/g;镁钛配合物质量浓度为100~400 g/L时制备的催化剂平均粒径为14~16μm。适宜的催化剂颗粒成形温度为15~45℃,在该温度范围内,聚合物堆密度为0.35 g/cm~3左右。随颗粒成形温度的升高,催化剂粒径分布变宽。随卤化剂用量的增大,催化剂平均粒径呈先增大后减小的趋势。搅拌转速550 r/min下制备的催化剂聚合所得聚合物粒径分布最优。随卤化剂滴加速度的加快,制备的催化剂聚合所得聚合物粒径分布变宽。  相似文献   

3.
采用本体聚合法,以TiCl4/Al(Et)3为复合催化剂、α-烯烃为单体,合成α-己烯/α-辛烯/α-十二烯三元聚合物,考察反应条件对聚合物特性黏数的影响。采用FT-IR,1HNMR,XRD等表征手段对聚合物结构进行表征。结果表明,在主催化剂TiCl4用量0.095 g、助催化剂Al(Et)3用量0.12 mL、聚合温度-3 ℃、V(α-十二烯)∶V(α-辛烯)∶V(α-己烯)为4∶2∶1(单体总体积40 mL)、聚合时间48 h的最佳聚合条件下,聚合物的特性黏数达到15.40 dL/g。表征结果表明:聚合物可以看成是拟合成的物质,经乙醇洗涤后可以得到基本不含单体的烯烃聚合物;合成的聚合物为结晶度较低的α-烯烃聚合物。  相似文献   

4.
在不同工艺条件下采用滴定沉淀法制备了系列SO42-/TiO2-ZnO-La2O3固体超强酸催化剂,考察了其对D,L-乳酸合成D,L-丙交酯反应的催化活性;研究了催化剂用量、脱水聚合温度、解聚温度、稀释剂用量及回收反应残留物等对D,L-丙交酯粗收率的影响;通过红外光谱和拉曼光谱对催化剂和纯化后的D,L-丙交酯进行了表征。实验结果表明,在n(Ti4+)∶n(Zn2+)∶n(La3+)=30∶30∶1、0.7mol/L硫酸溶液浸渍22h、焙烧温度460℃的条件下制得的SO42-/TiO2-ZnO-La2O3固体超强酸(TZL-460)催化剂催化合成D,L-丙交酯的效果最佳;在D,L-乳酸62.5g、TZL-460催化剂用量为D,L-乳酸质量的1.05%、136~145℃下脱水聚合2.5h、乙二醇稀释剂用量10mL、221~230℃解聚2.0h的条件下,D,L-丙交酯的粗收率为71.8%。经无水乙醇3次重结晶纯化后,纯D,L-丙交酯的总收率达38.5%,同时回收反应后的残留物可进一步提高D,L-丙交酯的粗收率。  相似文献   

5.
采用沉淀法制备了纳米晶氧化铜催化剂,通过XRD、TEM及N2吸附-脱附法对纳米晶氧化铜催化剂的微观结构进行了表征。表征结果显示,制备的纳米晶氧化铜的平均粒径为8.5 nm,比表面积为56.2 m2/g。研究了纳米晶氧化铜催化氧化苯酚的性能,同时对反应条件进行了优化。实验结果表明,自制的纳米晶氧化铜催化剂具有优良的催化性能,反应条件(如催化剂用量、抗坏血酸用量、溶剂中醋酸含量及反应温度)对苯二酚收率有显著影响。在苯酚浓度1.28 mol/L、催化剂用量0.572mol/L、抗坏血酸用量0.796 mol/L、20%(φ)醋酸水溶液(50 mL)为溶剂、氧气流量70~80 mL/min、反应温度308 K的优化条件下反应90 min,苯二酚收率达14.90%。  相似文献   

6.
采用溶液聚合法,以TiCl4/MgCl2为主催化剂、Al(i-Bu)3为助催化剂、乙烯和1-十二烯为聚合单体、正己烷为溶剂,制备了二元聚合物减阻剂。室内环道减阻性能评价结果表明,在1L反应釜内,1-十二烯和正己烷总体积为600mL、聚合温度为-2℃时,最优共聚条件为主催化剂用量0.4g、n(Al)/n(Ti)=80、V (1-十二烯)/ V (正己烷)=2/3、m(1-十二烯)/m(乙烯)=912,合成的聚合物减阻率为45.45%。采用13C-NMR、XRD对聚合物结构和结晶度进行表征,结果表明,乙烯单体的引入使聚合物的结晶性明显降低,有助于提高减阻剂在油品中的有效浓度,降低减阻剂溶液的用量。  相似文献   

7.
研究了以1-十六烯和1-十八烯为原料,采用实验室制备的Ziegler-Natta负载型催化剂及市售三乙基铝(TEAl)助催化剂,通过本体聚合的方法,在常压下制备低规整度的聚α-烯烃蜡。考察了不同聚合条件如主催化剂浓度、铝钛摩尔比、聚合温度、聚合时间以及加入外给电子体二苯基二甲氧基硅烷(DDS)对共聚物的粘均相对分子质量和收率的影响。实验结果表明,在主催化剂浓度为1.5 g/L、铝钛摩尔比30、反应温度50 ℃、反应时间90 min的条件下,制备的聚α-烯烃蜡粘均相对分子质量为4 012,滴熔点58.2 ℃,闪点240 ℃,运动粘度4 600 mm2/s,吸油值32.5 g/100 g。  相似文献   

8.
BCND催化剂催化丙烯聚合的动力学研究   总被引:1,自引:0,他引:1  
研究了在常压淤浆聚合条件下聚合温度对以1,3-二醇酯为内给电子体的BCND催化剂的丙烯聚合动力学行为的影响,并与目前工业生产装置上常用的几种以邻苯二甲酸酯为内给电子体的丙烯聚合催化剂进行了比较。实验结果表明,丙烯低温(10~20℃)聚合时,不同催化剂催化丙烯聚合的动力学行为近似,随聚合温度的升高,聚合反应速率增加,与N催化剂和YS-842催化剂相比,BCND催化剂的丙烯聚合活性受聚合温度的影响较小;丙烯在较高温度(70~90℃)聚合时,随聚合温度的升高,BCND催化剂活性中心的衰减速率加快,聚合反应速率下降,但与参比催化剂相比,BCND催化剂催化丙烯聚合的反应速率仍为最大。  相似文献   

9.
SO2-4/TiO2-ZnO-La2O3固体超强酸催化合成D,L-丙交酯   总被引:1,自引:1,他引:0  
在不同工艺条件下采用滴定沉淀法制备了系列SO42-/TiO2-ZnO-La2O3固体超强酸催化剂,考察了其对D,L-乳酸合成D,L-丙交酯反应的催化活性;研究了催化剂用量、脱水聚合温度、解聚温度、稀释剂用量及回收反应残留物等对D,L-丙交酯粗收率的影响;通过红外光谱和拉曼光谱对催化剂和纯化后的D,L-丙交酯进行了表征.实验结果表明,在n(Ti4 )n(Za2 )n(La3 )=30301、0.7mol/L硫酸溶液浸渍22h、焙烧温度460℃的条件下制得的SO42-/TiO2-ZnO-La2O3固体超强酸(TZL-460)催化剂催化合成D,L-丙交酯的效果最佳;在D,L-乳酸62.5g、TZL-460催化剂用量为D,L-乳酸质量的1.05%、136~145℃下脱水聚合2.5h、乙二醇稀释剂用量10mL、221~230℃解聚2.0h的条件下,D,L-丙交酯的粗收率为71.8%.经无水乙醇3次重结晶纯化后,纯D,L-丙交酯的总收率达38.5%,同时回收反应后的残留物可进一步提高D,L-丙交酯的粗收率.  相似文献   

10.
以MgCl_2和TiCl_4为主要原料制备了BCE催化剂,通过乙烯淤浆聚合考察了聚合温度对BCE催化剂的聚合反应动力学和聚合性能的影响。实验结果表明,聚合温度越高,乙烯聚合的初始反应越强烈,但随聚合时间的延长,催化剂的活性衰减速率也越快。随聚合温度的升高,聚合活性增大,聚合物的熔体流动速率增大,聚合温度为95℃时,BCE催化剂的聚合活性接近32 kg/g。聚合温度升高有利于乙烯和己烯共聚。随聚合温度的升高,聚合物的粒径分布变宽,粒径大于830μm的大颗粒和小于75μm的细粉含量均升高。  相似文献   

11.
为减少聚丙烯(PP)产品的细粉含量,确保PP装置的稳定运行,中国石油兰州石化公司试用了Basell公司ZN111—4催化剂。结果表明,与装置沿用的ZNM1催化剂(生产均聚PP产品(牌号T38F)时使用)和ZN118催化剂(生产共聚PP产品(牌号SP179)时使用)相比,使用ZN111—4催化剂生产这2种PP产品,催化活性可提高15%以上;生产T38F时外给电子体消耗量可降低5%,生产SP179时外给电子体消耗量可降低33%;PP粉料产品的平均粒径较小,但粒径小于300μm的细粉含量相当;共聚性能与ZN118催化剂相当。  相似文献   

12.
以Al2(SO4)3和NH3.H2O为原料合成了拟薄水铝石,经煅烧得到γ-Al2O3;采用X射线衍射、透射电子显微镜、热重-示差扫描量热和压汞法等方法对拟薄水铝石和γ-Al2O3进行了表征。表征结果显示,低堆密度大孔体积的γ-Al2O3的较佳制备条件为:反应液的pH为8、Al3+浓度为0.9mol/L、反应时间60min、反应温度70℃、NH3.H2O的质量分数为21%、800℃下煅烧5h。在此条件下制备的γ-Al2O3的比表面积为207.43m2/g、总孔体积为2.93mL/g、堆密度为0.23g/mL,且具有双孔分布,其中孔径大于100nm的孔的体积占总孔体积的58.91%,适用于大分子脱氢催化剂的载体。  相似文献   

13.
谭扬  姜涛  刘月祥  陈伟 《石油化工》2007,36(8):780-783
采用MgCl2-SiO2复合载体,制备了TiCl4/SiO2-MgCl2催化剂,并将该催化剂用于丙烯聚合,研究了预络合对TiCl4/SiO2-MgCl2催化剂的活性及聚丙烯颗粒形态的影响。实验结果表明,预络合有助于提高TiCl4/SiO2-MgCl2催化剂的活性,可有效控制聚丙烯颗粒形态,防止聚丙烯颗粒破碎。预络合后,TiCl4/SiO2-MgCl2催化剂的活性从29kg/(g.h)提高至41kg/(g.h),聚丙烯的表观密度从0.38g/mL提高到0.45g/mL。在乙烯-丙烯共聚物的制备中,预络合有助于提高乙烯-丙烯共聚物的抗冲性能,常温冲击强度(25℃)由4.9kJ/m2增至12.8kJ/m2,低温冲击强度(-20℃)由2.2kJ/m2增至9.6kJ/m2。  相似文献   

14.
AlCl_3/SiO_2催化剂在二甲基直链烷基苯合成反应中的稳定性   总被引:1,自引:1,他引:0  
以二甲苯和工业混合烯烃(C1=4~18)为原料,AlCl3/SiO2为催化剂合成了二甲基直链烷基苯;采用N2吸附、原子吸收光谱及化学分析方法对载体的比表面积、孔分布及催化剂上氯化物的含量进行了测定;考察了载体预处理温度、载体孔径、催化剂颗粒大小、反应温度、反应时间及原料配比对催化剂稳定性的影响。实验结果表明,载体预处理温度影响催化剂上氯化物的含量,预处理温度为200℃的载体制备的催化剂稳定性最好;烯烃聚合物和二甲苯裂解、歧化产生的副产物显著影响催化剂的稳定性。使用40~60目的催化剂,在反应温度80℃、反应时间1.0h、催化剂用量1.0g、二甲苯与烯烃摩尔比为10∶1的条件下,催化剂的稳定性最好,在烯烃转化率保持100%的情况下可以循环使用11次。  相似文献   

15.
在SiO2载体中引入分子状态的MgCl2后再负载TiCl4,制备了高活性的用于乙烯与1-己烯淤浆共聚的双载体Ziegler-Natta催化剂TiCl4/SiO2-MgCl2。催化剂的最佳制备条件:n(TiCl4)∶n(MgCl2)=10,滴加TiCl4温度为-25℃,n(C2H5OH)∶n(MgCl2)=2.4,m(SiO2)∶m(MgCl2)=1。用激光粒度分析仪、SEM和WAXD等手段对催化剂的粒径分布、颗粒形态和结晶情况进行表征的结果显示,催化剂的粒径在20~45μm之间,较均匀;且颗粒形态呈球形。当催化剂中Ti的质量分数为5.1%时,该催化剂可高效催化乙烯与1-己烯进行淤浆共聚,催化效率达1.59kg/g,乙烯-1-己烯共聚物的数均相对分子质量为3.1×104g/mol,相对分子质量分布为16.3,呈宽分布。  相似文献   

16.
本文采用水热均匀沉淀法,以硫酸铝和尿素为原料合成拟薄水铝石,结合SEM、XRD、N2吸附等分析表征手段,考察了水热反应温度和时间对产物形貌、晶型、比表面积、孔容和孔径的影响,并对晶粒形貌变化原因进行了初步分析。水热温度由100℃升高到140℃时,晶粒形貌发生了从球状到纤维状的转变,各温度下产物经600℃煅烧后比表面由15.7m2/g提高到190 m2/g,孔容由0.02ml/g提高到0.36ml/g,孔径由4.6nm提高到8.3nm。160℃下反应则纤维变粗、变长了。XRD显示产物都为拟薄水铝石晶形,结晶度较好。140℃下水热反应16h的沉淀产物经600℃煅烧后SBET=201m2/g,VP=0.44ml/g,DP=8.7nm,都表现为最大值,孔径分布较集中。  相似文献   

17.
制备了Ziegler-Natta/茂金属复合(Z-M)催化剂,用SEM技术对其形貌进行了表征,在10L丙烯液相本体聚合模试装置上对Z-M催化剂的氢调敏感性进行了评价。通过一段丙烯本体均聚、二段乙烯-丙烯近恒温恒压气相共聚模拟Spheripol-Ⅱ工艺制备了系列聚丙烯(PP)釜内合金;考察了二段共聚时的聚合反应动力学、乙烯与丙烯配比(n(C3)∶n(C2))对PP釜内合金性能的影响。实验结果表明,在一段均聚时Z-M催化剂具有较好的氢调敏感性,得到的均聚PP粒子具有较好的流动性;在二段共聚时,Z-M催化剂能在较长的共聚时间内保持较平稳、较高的共聚活性,改变n(C3)∶n(C2)时PP釜内合金中乙丙橡胶的质量分数可调(7.19%~10.75%),熔体流动速率(10min)可调(14.0~26.5g);n(C3)∶n(C2)对合金弯曲模量的影响不大;当n(C3)∶n(C2)=1.7时制备的PP釜内合金具有最大的冲击强度(92.9J/m)。  相似文献   

18.
 以钛酸丁酯为钛源、十六烷基三甲基溴化铵(CTAB)为模板剂,在超声波强化作用下制备介孔TiO2,并采用XRD、FT-IR、TG-DTA、UV-Vis、TEM和EDX分析手段对所得样品进行表征,以苯并噻吩为模型化合物,考察其光催化氧化脱硫性能。结果表明,在450℃下焙烧2 h、n(TiO2)/n(CTAB)=1/0.04的条件下,可得到球形粒子状、颗粒分布均匀、紫外光吸收边为387 nm、禁带宽度为3.32 eV、晶粒粒径6.93 nm、平均孔径3.21 nm、比表面积147.134 m2/g、孔容0.259 cm3/g的锐钛矿型介孔TiO2。在催化剂用量15 mg、H2O2作为氧化剂、nS/nO=1/200、萃取剂甲醇5 mL、吸附时间40 min、20℃反应3 h的条件下,对5 mL苯并噻吩石油醚溶液的脱硫率为98.62%。  相似文献   

19.
球形TiCl_4/MgCl_2催化剂催化丙烯聚合   总被引:1,自引:0,他引:1  
以乳化急冷法制备的球形M gC l2为载体,制备了球形T iC l4/M gC l2催化剂(简称催化剂),并将该催化剂用于丙烯聚合。采用扫描电子显微镜、N2吸附法对催化剂及聚合物的形态进行了表征,考察了聚合时间、聚合温度、铝钛比、铝硅比、氢气加入量对催化剂性能的影响。实验结果表明,催化剂与聚合物均为球形,且催化剂粒径分布窄,具有较大的孔体积和孔径,所制得的聚丙烯也具有孔隙率大、孔径大等特点。较佳的聚合条件为:聚合温度70~75℃、聚合时间3h、铝与钛摩尔比为300、铝与硅摩尔比为15、氢气加入量(质量分数)2.00×10-4;在此条件下,催化剂具有较高的催化活性,同时聚丙烯具有较高的等规度;催化剂具有良好的氢调敏感性。  相似文献   

20.
丙二醇二甲醚的合成   总被引:1,自引:1,他引:0  
朱新宝  王甫泉  藏莹 《石油化工》2004,33(4):356-359
以丙二醇甲醚、NaOH、氯甲烷为主要原料,进行相转移催化反应制备丙二醇二甲醚。采用正交实验法确定的反应条件为:丙二醇甲醚(PM)/NaOH摩尔比为1/1.5、反应温度为60-85℃、反应时间为6 h、搅拌速率为500 r/min、m(催化剂TC-1)/m(PM)=1/1.5,在此条件下丙二醇甲醚反应的转化率达93.8%。确定粗产品精馏工艺的反应条件为:釜温99-100℃、顶温94℃、回流比为1,精馏得到丙二醇二甲醚的纯度大于99.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号