首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A power and area efficient CMOS clock/data recovery circuit designed for a wide range of applications in high-speed serial data communications is described. It uses an analog phase-locked loop (PLL) to generate the high-speed clocks with an absolute rms jitter of less than 60 ps and a digital PLL which is designed to minimize chip area and power consumption to recover the clock and data signals from the incoming data stream. Fabricated in a 0.8 μm single-polysilicon, double-metal CMOS process, the digital PLL only consumes 45 mW at 125 Mb/s from a single 5 V supply, while the analog PLL consumes 92 mW. The chip area is 1.7 mm2 for the digital PLL and 0.44 mm2 for the analog PLL. It can handle an input data rate up to 280 Mb/s  相似文献   

2.
A high-frequency integrated CMOS phase-locked loop (PLL) including two phase detectors is presented. The design integrates a voltage-controlled oscillator, a multiplying phase detector, a phase-frequency detector, and associated circuitry on a single die. The loop filter is external for flexibility and can be a simple passive circuit. A 2-μm CMOS p-well process was used to fabricate the circuit. The loop can lock on input frequencies in excess of 200 MHz with either or both detectors and consumes 500 mW from a single 5-V supply. The oscillator is a ring of three inverting amplifiers and draws from an internal supply voltage regulated by an on-chip bandgap reference. This combination serves to reduce the supply and temperature sensitivity is less than 5%/V, and the oscillator temperature variation is 2.2% in the range of 25 to 80°C. The typical oscillator tuning range is 112 to 209 MHz. The multiplying phase detector and phase-frequency detector exhibit input-referred phase offsets of <4° and -24°, respectively. A numerical system simulation program was written to explore the time-domain behavior of an idealized model based on the PLL design  相似文献   

3.
A temperature-compensation circuit technique for a dynamic random-access memory (DRAM) with an on-chip voltage limiter is evaluated using a 1-Mb BiCMOS DRAM. It was found that a BiCMOS bandgap reference generator scheme yields an internal voltage immune from temperature and Vcc variation. Also, bipolar-transistor-oriented memory circuits, such as a static BiCMOS word driver, improve delay time at high temperatures. Furthermore, the BiCMOS driver proves to have better temperature characteristics than the CMOS driver. Finally, a 1-Mb BiCMOS DRAM using the proposed technique was found to have better temperature characteristics than the 1-Mb CMOS DRAM which uses similar techniques, as was expected. Thus, BiCMOS DRAMs have improved access time at high temperatures compared with CMOS DRAMs  相似文献   

4.
Under cryogenic operation, a low Vth realizes a high speed performance at a greatly reduced power-supply voltage, which is the most attractive feature of Cryo-CMOS. It is very important in sub-0.25 μm Cryo-CMOS devices to reconcile the miniaturization and the low Vth. Double implanted MOSFET's technology was employed to achieve the low Vth while maintaining the short channel effects immunity. We have investigated both the DC characteristics and the speed performance of 0.25 μm gate length CMOS devices for cryogenic operation. The measured transconductances in the saturation region were 600 mS/mm for 0.2 μm gate length n-MOSFET's and 310 mS/mm for 0.25 μm gate length p-MOSFET's at 80 K. The propagation delay time in the fastest CMOS ring oscillator was 22.8 ps at Vdd=1 V at 80 K. The high speed performance at extremely low power-supply voltages has been experimentally demonstrated. The speed analysis suggests that the sub-l0 ps switching of Cryo-CMOS devices will be realized by reducing the parasitic capacitances and through further miniaturization down to 0.1 μm gate length or below  相似文献   

5.
An all-band TV tuner IC with an on-chip PLL and a high-voltage output stage is developed. The use of a self-aligned bipolar technology called high-voltage compatible sidewall base contact structure (HV-SICOS) allows the integration of 1-GHz analog circuits, 1-GHz low-power ECL-I2L PLL circuits, and a 0.5- to 30-V tuning diode bias current on the same chip. The analog block has a VCO and mixer pair for the VHF/CATV and another pair for the UHF bands, a UHF input amplifier, an IF amplifier, and a VCO signal switching circuit. To suppress the digital noise level for mixed analog/digital mode operation, the PLL is constructed with high-speed ECL circuits for divide-by-four and dual modulus prescalers, and low-power I2L circuits. An isolation area is placed between the analog and digital blocks. Conversion gain of 24 dB for VHF/CATV and 33 dB for UHF, a noise figure of 10 dB, and 1% cross modulation of 95 dB-μV are obtained. This IC operates with a total power dissipation of 200 mW on a 3-mm×4-mm chip  相似文献   

6.
The design optimization for 0.3-μm channel CMOS technology at liquid-nitrogen temperature (77 K) is described. The tradeoff between circuit performance and reliability for deep-submicrometer CMOS devices at low-temperature operation is theoretically and experimentally examined. A simulator, which selects power-supply voltage and process/device parameters for low-temperature operation, has been developed. Based upon the simulated results, design optimization for low-temperature operation has been proposed to determine power-supply voltage and various process and device parameters. The optimized design has been demonstrated on a 0.3-μm CMOS device, by utilizing electron beam (EB) lithography· Excellent device characteristics and a functional ring oscillator circuit have been obtained at 77 K  相似文献   

7.
Fully integrated standard cell digital PLL   总被引:2,自引:0,他引:2  
Olsson  T. Nilsson  P. 《Electronics letters》2001,37(4):211-212
A fully integrated digital phase-locked loop (PLL) used as a clock multiplying circuit is designed. The PLL is made from standard cells found in almost any commercial standard cell library and therefore portable between processes in netlist format. Using a 0.35 μm standard complementary metal-oxide-semiconductor CMOS process and a 3.0 V supply voltage, the PLL is designed for a locking range of 170 to 360 MHz and occupies an on-chip area of 0.06 mm2  相似文献   

8.
A 1.6-GHz CMOS PLL with on-chip loop filter   总被引:1,自引:0,他引:1  
A 1.6-GHz phase locked loop (PLL) has been fabricated in a 0.6-μm CMOS technology. The PLL consists of an LC-tank circuit, divider, phase detector with charge pump, and an on-chip passive loop filter. When the oscillator is open loop, it exhibits -115 dBc/Hz phase noise at a 600-kHz offset from the carrier. The PLL occupies an active area of 1.6 mm2 and dissipates 90 mW from a single 3-V supply  相似文献   

9.
给出了一个900MHz CMOS锁相环/频率综合器的设计,设计中采用了电流可变电荷泵及具有初始化电路的环路滤波器.电荷泵电流对温度与电源电压变化的影响不敏感,同时电流的大小可通过外部控制信号进行切换控制而改变.因此,锁相环的特性,诸如环路带宽等,也可通过电流的改变而改变.采用具有初始化电路的环路滤波器可提高锁相环的启动速度.另外采用了多模频率除法器以实现频率合成的功能.该电路采用0.18μm、1.8V、1P6M标准数字CMOS工艺实现.  相似文献   

10.
This paper proposes an on-chip 96.5% current efficiency CMOS linear regulator using a flexible control technique of output current (FCOC). By the use of the FCOC technique, the proposed circuit realizes flexible output current drive according to the load current variation. Therefore, the proposed linear regulator ran supply stable output voltage using the FCOC technique. The linear regulator is fabricated by double-metal 1.2-μm CMOS technology. The number of transistors is 46 and the die size is 0.423 mm2. The fabricated linear regulator achieves a fluctuation of output voltage less than 6.81 mVp-p at a frequency of output current f(Iout) ranging from 1.8 Hz to 100 MHz. Moreover, the fabricated on-chip CMOS linear regulator can achieve 96.5% current efficiency  相似文献   

11.
In this paper a low-voltage low-power threshold voltage monitor for CMOS process sensing is presented. This circuit works in weak inversion and it can be used as an elementary circuit block for on-chip compensation of the intra-die or inter-die threshold voltage variations in low-power analog and mixed-signal SoC, since it is robust to temperature and power supply voltage variations (similar to the bandgap voltage reference). The proposed threshold voltage monitor has been successfully verified in a standard 0.35-μm n-well CMOS TSMC process. Experimental results have confirmed that the circuit generates an average reference voltage of 758 mV (very close to the typical threshold voltage when extrapolated to absolute zero) for a 950 mV power supply voltage, with a variation of 39 ppm/°C for the −20 to 80°C temperature range.  相似文献   

12.
1 V rail-to-rail constant-gm CMOS op amp   总被引:1,自引:0,他引:1  
Lu  C.-W. Hsiao  C.-M. 《Electronics letters》2009,45(11):529-530
A 1 V rail-to-rail constant-gm CMOS operational amplifier is proposed. This study shows that keeping the sum of currents in the complementary differential pairs constant rather than controlling the tail currents produces a constant-gm input stage operating in the weak inversion. The currents in the n-channel differential pair are regulated to keep the sum of currents in the complementary differential pairs constant using a negative feedback loop. This study also provides experimental results obtained from a 0.35 μm CMOS prototype chip.  相似文献   

13.
A high-speed hybrid clock recovery circuit composed of an analog phase-locked loop (PLL) and a digital PLL (DPLL) for disk drive applications is described. The chip operates at a maximum data rate of 33 MHz from a single 5-V power supply and achieves fast acquisition, a decode window of 95% of full window width, effective sampling jitter of 100-ps rms, and an effective input sampling rate of 1 GHz. The ring oscillator in the analog PLL shows a 62 p.p.m./°C temperature coefficient (TC) and 4.5%/V supply sensitivity of free-running frequency. The total power dissipation is about 600 mW, and the active area is 30000 mil2 in a 2-μm single-poly double-metal n-well CMOS process  相似文献   

14.
A 1.41–1.72 GHz fractional-N phase-locked loop (PLL) frequency synthesizer with a PVT insensitive voltage-controlled oscillator (VCO) is presented. In this PLL, a VCO with process, voltage, and temperature (PVT) insensitive bias circuit, and a divided-by-7/8 prescaler with improved multi-phase frequency divider are adopted. A novel multi-stage noise shaping (MASH) sigma-delta modulator (SDM) is adopted here. A new combination of low-current-mismatch charge pump (CP) and a phase/frequency detector (PFD) is proposed in this paper. Using Hejian Technology CMOS 0.18 μm analog and digital mixed-mode process, a fractional-N PLL prototype circuit is designed, the VCO in the prototype circuit can operate at a central frequency of 1.55 GHz, and its phase noise is −121 dBc/Hz at 1.0 MHz, the variety of phase noise is depressed by about 1.4 dB with the help of PVT insensitive bias. Under a 1.8-V supply voltage, the phase noise of the PLL is −113 dBc/Hz at 1.0 MHz.  相似文献   

15.
This paper presents a 14-bit digitally self-calibrated pipelined analog-to-digital converter (ADC) featuring adaptive bias optimization. Adaptive bias optimization controls the bias currents of the amplifiers in the ADC to the minimum amount required, depending on the sampling speed, environment temperature, and power-supply voltage, as well as the variations in chip fabrication. It utilizes information from the digital calibration process and does not require additional analog circuits. The prototype ADC occupies an area of 0.5/spl times/2.3 mm/sup 2/ in a 0.18-/spl mu/m dual-gate CMOS technology; with a power supply of 2.8 V, it consumes 19.2, 33.7, 50.5, and 72.8 mW when operating at 10, 20, 30, and 40 MS/s, respectively. The peak differential nonlinearity (DNL) is less than 0.5 least significant bit (LSB) for all the sampling speeds with temperature variation up to 80/spl deg/C. When operated at 20 MS/s with 1-MHz input, the ADC achieves 72.1-dB SNR and 71.1-dB SNDR.  相似文献   

16.
An on-chip ultra-high-voltage charge pump circuit realized with the polysilicon diodes in the low-voltage bulk CMOS process is proposed in this work. Because the polysilicon diodes are fully isolated from the silicon substrate, the output voltage of the charge pump circuit is not limited by the junction breakdown voltage of MOSFETs. The polysilicon diodes can be implemented in the standard CMOS processes without extra process steps. The proposed ultra-high-voltage charge pump circuit has been fabricated in a 0.25-mum 2.5-V standard CMOS process. The output voltage of the four-stage charge pump circuit with 2.5-V power-supply voltage (VDD=2.5 V) can be pumped up to 28.08 V, which is much higher than the n-well/p-substrate breakdown voltage (~18.9 V) in a 0.25-mum 2.5-V bulk CMOS process  相似文献   

17.
A 320 MHz triple 8 bit DAC with on-chip phase-locked loop (PLL), hardware cursor function, and an architecture that relies on time-interleaved logic blocks is presented. Overall device performance is optimized by operating different portions of the circuit at different frequencies and combining parallelism with time-interleaving to minimize the hardware cost. Clock multiplication by the on-chip PLL improved the maximum frequency of operation of the prototype circuits by 20 percent. The PLL operates from 20-500 MHz and has a peak-to-peak jitter of 60 ps at an operating frequency of 432 MHz. The 10 mm×10 mm chip was fabricated in a 0.8 μm CMOS process and dissipates 1.54 W from a single 5 V supply  相似文献   

18.
A 4-GHz clock system for a high-performance system-on-a-chip design   总被引:1,自引:0,他引:1  
A digital system's clocks must have not only low jitter, but also well-controlled duty cycles in order to facilitate versatile clocking techniques. Power-supply noise is often the most common and dominant source of jitter on a phase-locked loop's (PLL) output clock. Jitter can be minimized by regulating the supply to the PLL's noise-sensitive analog circuit blocks in order to filter out supply noise. This paper introduces a PLL-based clock generator intended for use in a high-speed highly integrated system-on-a-chip design. The generator produces clocks with accurate duty cycles and phase relationships by means of a high-speed divider design. The PLL also achieves a power-supply rejection ratio (PSRR) greater than 40 dB while operating at frequencies exceeding 4 GHz. The high level of noise rejection exceeds that of earlier designs by using a combination of both passive and active filtering of the PLL's analog supply voltage. The PLL system has been integrated in a 0.15-μm single-poly 5-metal digital CMOS technology. The measured performance indicates that at a 4-GHz output frequency the circuit achieves a PSRR greater than 40 dB. The peak cycle-to-cycle jitter is 25 ps at 700 MHz and a 2.8-GHz VCO frequency with a 500-mV step on the regulator's 3.3-V supply. The total power dissipated by the prototype is 130 mW and its active area is 1.48×1.00 mm2  相似文献   

19.
A constant-gm input stage featuring both constant small signal and large signal behaviors over the entire input common-mode range is proposed in this brief. A novel static feedback loop is employed to minimize the N and P transconductance mismatch due to process and temperature variations. The output currents of the N and P differential pairs are dynamically steered to keep a constant gm and a constant slew rate. The overall technique is independent of the operation regions of input transistors, and does not rely on the quadratic characteristics of input MOS transistors. A prototype chip was designed for a 0.35-mum CMOS technology with 3-V power supply. The experimental results demonstrate that a constant-gm (plusmn3% variations) and a constant slew rate over the entire input common-mode range have been achieved  相似文献   

20.
The transconductance of MOSFETS is very critical in analog integrated circuits, since it determines many important performance parameters such as gain, bandwidth, speed and noise. A novel on-chip temperature-compensated constant transconductance reference circuit is presented in this paper, which operates with a 1.8 V power supply and is implemented with a mixed-signal CMOS process. The transconductance of this circuit achieves a temperature coefficient of 136 ppm/°C over the temperature range of (–25°C, 125°C). Furthermore, this circuit also gives out a constant current reference realizing a temperature coefficient of 48 ppm/°C over the temperature range of (–25°C, 125°C). This circuit will finds popular applications in many kinds of CMOS analog integrated circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号