首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microencapsulated ammonium polyphosphate (GMFAPP) is prepared by in situ polymerization method with a shell of poly(ethylene glycol) modified melamine-formaldehyde resin. Due to the presence of shell, GMFAPP shows less size, higher water resistance and flame retardancy in polypropylene (PP) compared with ammonium polyphosphate (APP). The flame retardant action of GMFAPP and APP in PP are studied using LOI, UL-94 and cone calorimeter, and their thermal stability is evaluated by thermogravimetric apparatus. The limiting oxygen index (LOI) value of the PP/GMFAPP at the same loading is higher than the value of PP/APP. UL-94 ratings of PP/GMFAPP can reach V-0 at 30 wt% loading. The water resistant properties of the PP composites are studied, and the results of the composites containing with APP and GMFAPP are compared. The cone results put forward that GMFAPP is an effective flame retardant in PP compared with APP. Moreover, the thermal oxidative behavior of GMFAPP is evaluated by dynamic FTIR to study its flame retardant mechanism in PP.  相似文献   

2.
磷系阻燃剂FR/APP协效阻燃PP   总被引:3,自引:0,他引:3  
采用氧指数测定仪、热重分析仪和锥形量热仪研究了磷系阻燃剂1,3,5-三(5,5-二甲基-1,3-二氧杂环己内磷酸基)苯(FR)和聚磷酸铵(APP)复配体系对聚丙烯(PP)材料阻燃性能的影响.结果表明,FR/APP提高了PP的极限氧指数(LOI)、热稳定性和残炭率,降低了热释放速率.当w(FR)为15%和w(APP)为10%复配阻燃PP时,复合材料的LOI为29.6%.阻燃级别达到UL 94 V-0级.  相似文献   

3.
Dipentaerythritol (DPER), 4, 40-diphenylmethanediisocyanate (MDI) and melamine (MEL) are used as raw materials to microencapsulate ammonium polyphosphate (MAPP) in situ polymerization. The MAPP is characterized by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA). The results show that the coating operation can effectively improve water resistance of ammonium polyphosphate (APP), and MAPP has higher residual rate than that of APP after combustion. The flame retardant action of MAPP and APP in polypropylene (PP) is investigated by the limited oxygen index (LOI), vertical burning test (UL-94), TGA, SEM, and cone calorimeter test (CCT). The LOI value of the PP/MAPP composite at the same loading is higher than that of PP/APP composite. UL 94 ratings of PP/MAPP composites are raised to V-0 at 20 wt% loading. The results of CCT also show that MAPP is more efficient than APP. The morphological structures observed by digital photos and SEM demonstrated that MAPP could be promoted to form the continuous and compact intumescent char layer. The flame retardant mechanism of PP/MAPP is also discussed.  相似文献   

4.
Microencapsulated ammonium polyphosphate (MCAPP) with a melamine–formaldehyde (MF) resin coating layer was prepared by in situ polymerization. MCAPP was characterized by Fourier transform infrared, X‐ray photoelectron spectroscopy, and so on. The results show that the microencapsulation with MF resin leads to a decrease in the particles' size and water absorption. The flame retardant action and mechanism of MCAPP and ammonium polyphosphate (APP) in polypropylene are studied using limiting oxygen index (LOI) and UL 94 test, and their thermal stability is evaluated by thermogravimetric analysis. The LOI value of the PP/MCAPP composite at 30 wt% loading is 30.5%, whereas the corresponding value of the PP/APP composite is only 20%. Moreover, the LOI values of the PP/MCAPP/PER composites are higher than the ones of the PP/APP/PER composites. In the UL 94 test, the PP/MCAPP/PER composites with suitable ratios of MCAPP to PER can reach the V‐0 rating, and the best rating of the PP/APP/PER composites is V‐1. V‐1. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
The flammability of polypropylene (PP) composites containing intumescent flame‐retardant additives, i.e., melamine pyrophosphate (MPP) and 1‐oxo‐4‐hydroxymethyl‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane (PEPA) was characterized by limiting oxygen index (LOI), UL 94 test, and cone calorimeter. In addition, the thermal degradation of the composites was studied using thermogravimetric analysis (TG) and real‐time Fourier transform infrared (RTFTIR). It has been found that the PP composite only containing MPP (or PEPA) does not show good flame retardancy even at 30% additive level. Compared with the PP/MPP binary composite, the LOI values of the PP/MPP/PEPA ternary composites at the same additive loading are all increased, and UL 94 rating of the ternary composite (PP3) studied is raised to V‐0 rating from no rating (PP/MPP). The cone calorimeter results show that the heat release rate of some ternary composites decreases in comparison with the binary composite. It is noted from the TG data that initial decomposition temperatures of ternary composites are lower than that of the binary composites. The RTFTIR study indicates that the PP/MPP/PEPA composites have higher thermal oxidative stability than the pure PP. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
A novel intumescent flame retardant (IFR), containing ammonium polyphosphate (APP) and poly(tetramethylene terephthalamide) (PA4T), was prepared to flame‐retard acrylonitrile‐butadiene‐styrene (ABS). The flame retardation of the IFR/ABS composite was characterized by limiting oxygen index (LOI) and UL‐94 test. Thermogravimetric analysis (TGA) and TGA coupled with Fourier transform infrared spectroscopy (TG‐FTIR) were carried out to study the thermal degradation behavior of the composite and look for the mechanism of the flame‐retarded action. The morphology of the char obtained after combustion of the composite was studied by scanning electron microscopy (SEM). It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA4T/APP/ABS (7.5/22.5/70) system increasing from 18.5 to 30% and passing UL‐94 V‐1 rating. Meanwhile, the TGA and TG‐FTIR work indicated that PA4T could be effective as a carbonization agent and there was some reaction between PA4T and APP, leading to some crosslinked and high temperature stable material formed, which probably effectively promoted the flame retardancy of ABS. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame‐retarded ABS composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Mg–Al–Fe ternary layered double hydroxides (LDH) were synthesized based on bayer red mud by calcination‐rehydration method, and characterized using X‐ray diffraction and thermogravimetric analysis (TGA). The synergistic flame retardant effects of ammonium polyphosphate (APP) with LDH in ethylene‐vinyl acetate (EVA) composites were studied using limiting oxygen index (LOI), UL 94 test, cone calorimeter test (CCT), and smoke density test (SDT). The thermal degradation behavior of EVA/LDH/APP composites was examined by thermal gravimetric analysis‐fourier transform infrared spectrometry (TG‐FTIR). The results showed that LOI values decreased by incorporation of APP together with LDH; and, a suitable amount of APP in EVA/LDH composites can apparently improve UL 94 rating. The CCT results indicated that heat release rate (HRR) of the EVA/LDH/APP composites with APP decreased in comparison with that of the EVA/LDH composites. The SDT results showed that APP was helpful to suppress smoke. The TG‐FTIR data showed that the composites with APP had a higher thermal stability than the EVA/LDH composites at high temperature. POLYM. ENG. SCI., 54:766–776, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Tris(2‐hydroxyethyl) isocyanurate (THEIC) was used as charring agent and combined with ammonium polyphosphate (APP) to form an intumescent flame retardant (IFR) for polypropylene (PP). The flame retardancy and combustion performance of PP/IFR composite was tested by limiting oxygen index (LOI), UL‐94 vertical burning test and cone calorimeter. The results showed that PP/IFR composite had highest LOI of 34.8 and obtained V‐0 rating when 30 wt % IFR was loaded and mass ratio APP/THEIC was 2 : 1. The peak heat release (PHRR) and total heat release (THR) values of PP composite containing FRs were remarkably reduced compared with that of pure PP. However, water resistant test demonstrated the PP/IFR composite had poor flame retardant durability, both the LOI value and UL‐94 V‐rating decreased when PP/IFR composite was soaked in water at 70°C after 36 h. The degradation process and the char morphology of IFR and PP/IFR composite were investigated by TGA and SEM images. The possible reaction path between APP and THEIC in the swollen process was proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41214.  相似文献   

9.
Vinyl polysiloxane microencapsulated ammonium polyphosphate (MAPP) was prepared by a sol-gel method using vinyltrimethoxysilane as a precursor to improve its thermal stability and hydrophobicity. The MAPP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and thermogravimetric analyzer (TGA). The results showed that ammonium polyphosphate (APP) was successfully coated with vinyl polysiloxane. MAPP and pentaerythritol (PER) were used together to improve the flame retardancy of polypropylene (PP). The flame retardant properties of PP composites were investigated by limiting oxygen index (LOI), UL-94 test, TGA and SEM. When the MAPP was added as a flame retardant, with PER as a char forming agent, the LOI of PP/MAPP/PER composites was 33.1%, and it reached the UL-94 V-0 level. The results also demonstrated that the flame retardant properties of PP/MAPP/PER composites were better than those of PP/APP/PER composites at the same loading. Moreover, the addition of flame retardant and carbon forming agent could promote the crystallization behavior of PP.  相似文献   

10.
A hyperbranched derivative of triazine group (EA) was synthesized by elimination reaction between ethylenediamine and cyanuric chloride. The different‐mass‐ratio EA and ammonium polyphosphate (APP) were mixed and blended with polypropylene (PP) in a constant amount (25%) to prepare a series of EA/APP/PP composites. The component ratio effect of EA/APP on the flame‐retardant property of the EA/APP/PP composites was investigated using the limiting oxygen index (LOI), vertical burning (UL‐94), and cone calorimetry tests. Results indicated that the EA/APP/PP (7.50/17.50/75.00) composite with the appropriate EA/APP mass ratio had the highest LOI, UL94 V‐0 rating, lowest heat release rate, and highest residue yield. These results implied that the appropriate EA/APP mass ratio formed a better intumescent flame‐retardant system and adequately exerted their synergistic effects. Furthermore, average effective combustion heat values revealed that EA/APP flame retardant possessed the gaseous‐phase flame‐retardant effect on PP. Residues of the EA/APP/PP composites were also investigated by scanning electron microscopy, Fourier‐transform infrared, and X‐ray photoelectron spectroscopy. Results demonstrated that the appropriate EA/APP mass ratio can fully interact and lock more chemical constituents containing carbon and nitrogen in the residue, thereby resulting in the formation of a dense, compact, and intumescent char layer. This char layer exerted a condensed‐phase flame‐retardant effect on EA/APP/PP composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41006.  相似文献   

11.
A novel halogen‐free intumescent flame retardant, spirophosphoryldicyandiamide (SPDC), was synthesized and combined with ammonium polyphosphate (APP) to produce a compound intumescent flame retardant (IFR). This material was used in polypropylene (PP) to obtain IFR‐PP systems whose flammability and thermal behavior were studied by the limiting oxygen index (LOI) test, UL‐94, thermogravimetric analysis, and cone calorimetry. In addition, the mechanical properties of the systems were investigated. The results indicated that the compound intumescent flame retardant showed both excellent flame retardancy and antidripping ability for PP when the two main components of the IFR coexisted in appropriate proportions. The optimum flame retardant formulation was SPDC:APP = 3:1, which gave an LOI value of 38.5 and a UL‐94 V‐0 rating. Moreover, the heat release rate, production of CO, smoke production rate, and mass loss rate of the IFR‐PP with the optimum formulation decreased significantly relative to those of pure PP, according to the cone calorimeter analysis. The char residues from the cone calorimetry experiments were observed by scanning electron microscopy, which showed that a homogeneous and compact intumescent char layer was formed. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

12.
Amino trimethylene phosphonic acid melamine salt (MATMP) was synthesized and used as acid source and blowing agent in intumescent flame‐retarded polypropylene (PP); its compositions were characterized by Fourier transform infrared spectroscopy and X‐ray powder diffraction. An intumescent flame retardant (IFR) system composed of MATMP, pentaerythritol (PER), and PP was tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests, and thermogravimetric analysis and compared with an ammonium polyphosphate (APP)/PER system. The results showed that MATMP had better water resistance than APP, the LOI value of PP/MATMP/PER composite can reach 30.3%, and a UL‐94 V‐0 rating can be reached at 25 wt % IFR loading. The amount of residual char of IFR MATMP/PER was 20.3 and 9.5 wt % at 400 and 600 °C, respectively. A thermooxidative degradation route and a possible flame‐retardant mechanism of IFR were proposed according to the analysis of evolved gases and residual chars. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46274.  相似文献   

13.
张翔  张帆 《中国塑料》2012,(4):92-96
采用自制干法合成的磷-氮膨胀型阻燃剂(磷酸酯三聚氰胺盐,IFR)复配聚磷酸胺(APP)和聚四氟乙烯(PT-FE)阻燃改性聚丙烯(PP),利用极限氧指数法、垂直燃烧法分析了阻燃PP的燃烧性能,通过热重分析仪、傅里叶变换红外光谱仪、扫描电子显微镜和X射线光电子能谱对阻燃PP的热降解过程、燃烧性能、残炭结构进行了分析,并研究了燃烧过程中复配阻燃体系对PP的阻燃机理。结果发现,IFR、APP和PTFE之间具有明显的阻燃协效作用;当阻燃剂总添加量为24%(APP为6%、IFR为17.5%、PTFE为0.5%)(质量分数)时,阻燃PP的极限氧指数达到30.1%,垂直燃烧测试达UL 94V-0级;加入阻燃剂还能提高PP的热稳定性。  相似文献   

14.
In this article, the microencapsulated ammonium polyphosphate crystalline with form I (APP‐I) coated with melamine‐formaldehyde (MF) was prepared by in situ polymerization. Results of Fourier transform infrared spectra (FTIR), thermogravimetry (TG) energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) demonstrate that APP‐I is successfully microencapsulated with MF. Compared with APP‐I, the microencapsulated APP‐I with MF (MFAPP‐I) is of much smaller spheroidal particle size and lower solubility in water. In this study, the polypropylene (PP)/APP‐I/penpaerythritol (PER) and PP/MFAPP‐I/PER composites are prepared, and flame retardancy, thermal stability, and microstructure of corresponding composites are carefully investigated by limiting oxygen index (LOI), UL‐94 testing, TG, EDS, and SEM. Experimental results show that PP/MFAPP‐I/PER composites have advantages over PP/APP‐I/PER composites in terms of flame retardant properties and water resistance. Results of TG, SEM, and EDS show that the microencapsulated APP‐I with MF resin is conducive to increase the amount of residual yield and improve thermal stability of PP/MFAPP‐I/PER composites and the compatibility and dispersion of MFAPP‐I. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
The flame retardation of polypropylene (PP) composites containing melamine phosphate (MP) and pentaerythritol phosphate (PEPA) was characterized by limiting oxygen index (LOI) and UL 94. The morphology of the char obtained from the combustion of the composites was studied by scanning electron microscopy (SEM). The thermal degradation of the composites was investigated using thermogravimetric (TG) analysis and real‐time Fourier transform infrared (RTFTIR) spectroscopy. It has been found that the PP composites containing only MP do not show good flame retardancy even at 40% additive level. Compared with the PP/MP binary composites, all the LOI values of the PP/MP/PEPA ternary composites at the same additive loading increase, and UL 94 ratings of the ternary composites at suitable MP/PEPA ratios are raised to V‐0 from no rating (PP/MP). The TG and RTFTIR studies indicate that the interaction occurs among MP, PEPA and PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A novel charring agent (CNCA‐DA) containing triazine and benzene ring, using cyanuric chloride, aniline, and ethylenediamine as raw materials, was synthesized and characterized. The effects of CNCA‐DA on flame retardancy, thermal degradation, and flammability properties of polypropylene (PP) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), and cone calorimeter test (CCT). The TGA results showed that CNCA‐DA had a good char forming ability, and a high initial temperature of thermal degradation; the char residue of CNCA‐DA reached 18.5% at 800°C; Ammonium polyphosphate (APP) could improve the char residue of APP/CNCA‐DA system, the char residue reached 31.6% at 800°C. The results from LOI and UL‐94 showed that the intumescent flame retardant (IFR) containing CNCA‐DA and APP was very effective in flame retardancy of PP. When the mass ratio of APP and CNCA‐DA was 2 : 1, and the IFR loading was 30%, the IFR showed the best effect; the LOI value reached 35.6%. It was also found that when the IFR loading was only 20%, the flame retardancy of PP/IFR can still pass V‐0 rating in UL‐94 tests, and its LOI value reached 27.1%. The CCT results demonstrated that IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss (ML). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
以二乙醇胺为侧链,三聚氯氰和哌嗪为主链,采用一锅法制备了一种多羟基三嗪成炭剂(CDP),将其与聚磷酸铵(APP)复配成膨胀阻燃剂(IFR)用于阻燃聚丙烯(PP)。采用垂直燃烧、极限氧指数、热失重分析等手段研究了阻燃PP的阻燃性能和热稳定性,并用扫描电子显微镜(SEM)对炭层形貌进行了研究。结果表明,APP和CDP具有良好的协同阻燃效果,当APP与CDP质量比为2∶1时,协同阻燃效果最优,仅添加20% IFR,即可使PP达到UL94 V–0级别,LOI为29.5%。热失重分析表明该复合材料在800℃具有最高的残炭量,SEM也显示形成了连续致密的炭层。  相似文献   

19.
采用苯基三甲氧基硅烷为前驱体,通过溶胶凝胶法制备出苯基聚硅氧烷微胶囊化聚磷酸铵(MAPP)。将MAPP作为阻燃剂,季戊四醇(PER)作为成炭剂,制备阻燃聚丙烯(PP)。用傅里叶红外光谱、扫描电子显微镜、能谱仪及热重分析仪对MAPP进行表征。结果表明,聚磷酸铵(APP)被苯基聚硅氧烷成功包覆;较之APP,MAPP的热稳定性和疏水性显著提高;MAPP的阻燃性能优于APP,PP/MAPP/PER复合材料达到V-0级别;阻燃剂及成炭剂的加入对PP的结晶行为有促进作用。  相似文献   

20.
复配阻燃剂阻燃纯棉织物的工艺研究   总被引:1,自引:0,他引:1  
采用聚磷酸铵(APP),季戊四醇(PER),聚磷酸蜜胺(MPP)复配作为阻燃纯棉织物的阻燃剂,以乙二醛(GLY)为交联剂,研究APP的最佳溶解温度及织物的焙烘条件,并在此条件下以APP/MPP/PER/GLY(10/7/1/2)为复配阻燃剂整理纯棉织物。通过氧指数、垂直燃烧、热降解等表征其阻燃性能。研究结果表明:APP的最佳溶解温度为85℃,复配阻燃剂整理纯棉织物的烘焙条件140℃×150s,阻燃纯棉织物的阻燃性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号