首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
强化学习在机器人足球比赛中的应用   总被引:8,自引:1,他引:8  
机器人足球比赛是一个有趣并且复杂的新兴的人工智能研究领域 ,它是一个典型的多智能体系统。采用强化学习方法研究了机器人足球比赛中的足球机器人的动作选择问题 ,扩展了单个Agent的强化学习方法 ,提出了基于多Agents的强化学习方法 ,最后给出了实验结果。  相似文献   

2.
在多机器人系统中,协作环境探索的强化学习的空间规模是机器人个数的指数函数,学习空间非常庞大造成收敛速度极慢。为了解决这个问题,将基于动作预测的强化学习方法及动作选择策略应用于多机器人协作研究中,通过预测机器人可能执行动作的概率以加快学习算法的收敛速度。实验结果表明,基于动作预测的强化学习方法能够比原始算法更快速地获取多机器人的协作策略。  相似文献   

3.
多智能体强化学习及其在足球机器人角色分配中的应用   总被引:2,自引:0,他引:2  
足球机器人系统是一个典型的多智能体系统, 每个机器人球员选择动作不仅与自身的状态有关, 还要受到其他球员的影响, 因此通过强化学习来实现足球机器人决策策略需要采用组合状态和组合动作. 本文研究了基于智能体动作预测的多智能体强化学习算法, 使用朴素贝叶斯分类器来预测其他智能体的动作. 并引入策略共享机制来交换多智能体所学习的策略, 以提高多智能体强化学习的速度. 最后, 研究了所提出的方法在足球机器人动态角色分配中的应用, 实现了多机器人的分工和协作.  相似文献   

4.
文章在简单概述强化学习理论的基础上,对强化学习在实际机器人应用中经常遇到的连续状态-动作空间、信度分配、探索和利用的平衡、不完整信息等关键性问题进行了讨论,给出了一些常用的解决方法,以期为相关的研究和应用提供一个参考。  相似文献   

5.
基于强化学习的多机器人协作   总被引:3,自引:0,他引:3  
提出了一种动态环境下多个机器人获取合作行为的强化学习方法,该方法采用基于瞬时奖励的Q-学习完成单个机器人的学习,并利用人工势场法的思想确定不同机器人的学习顺序,在此基础上采用交替学习来完成多机器人的学习过程。试验结果表明所提方法的可行性和有效性。  相似文献   

6.
多机器人动态编队的强化学习算法研究   总被引:8,自引:0,他引:8  
在人工智能领域中,强化学习理论由于其自学习性和自适应性的优点而得到了广泛关注.随着分布式人工智能中多智能体理论的不断发展,分布式强化学习算法逐渐成为研究的重点.首先介绍了强化学习的研究状况,然后以多机器人动态编队为研究模型,阐述应用分布式强化学习实现多机器人行为控制的方法.应用SOM神经网络对状态空间进行自主划分,以加快学习速度;应用BP神经网络实现强化学习,以增强系统的泛化能力;并且采用内、外两个强化信号兼顾机器人的个体利益及整体利益.为了明确控制任务,系统使用黑板通信方式进行分层控制.最后由仿真实验证明该方法的有效性.  相似文献   

7.
基于强化学习的多机器人编队方法研究   总被引:1,自引:0,他引:1  
介绍了国内外关于强化学习的研究现状,对应用Q-学习和神经网络来实现多机器人的自适应编队方法给出了详细的系统描述。  相似文献   

8.
宋志伟  陈小平 《机器人》2003,25(Z1):761-766
本文总结当前仿真机器人足球中强化学习的研究进展,系统阐述在仿真机器人足球不同决策层次中使用强化学习的不同方法,针对仿真机器人足球的特点讨论当前使用的几种对环境状态空间进行泛化的方法,并展望今后强化学习在仿真机器人足球中的主要应用方向.  相似文献   

9.
任燚  陈宗海 《控制与决策》2006,21(4):430-434
多机器人系统中,随着机器人数目的增加.系统中的冲突呈指数级增加.甚至出现死锁.本文提出了基于过程奖赏和优先扫除的强化学习算法作为多机器人系统的冲突消解策略.针对典型的多机器人可识别群体觅食任务.以计算机仿真为手段,以收集的目标物数量为系统性能指标,以算法收敛时学习次数为学习速度指标,进行仿真研究,并与基于全局奖赏和Q学习算法等其他9种算法进行比较.结果表明所提出的基于过程奖赏和优先扫除的强化学习算法能显著减少冲突.避免死锁.提高系统整体性能.  相似文献   

10.
强化学习可以让机器人通过与环境的交互,学习最优的行动策略,是目前机器人领域关注的重要前沿方向之一.文中简述机器人任务规划问题的形式化建模,分析强化学习的主要方法,分别介绍无模型强化学习、基于模型的强化学习和分层强化学习的研究进展,着重探讨基于强化学习的机器人任务规划的研究进展,并讨论各种强化学习及其应用情况.最后总结强化学习在机器人应用中面临的问题与挑战,展望未来的研究方向.  相似文献   

11.
This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reinforcement tasks, and they do this without explicitly computing gradient estimates or even storing information from which such estimates could be computed. Specific examples of such algorithms are presented, some of which bear a close relationship to certain existing algorithms while others are novel but potentially interesting in their own right. Also given are results that show how such algorithms can be naturally integrated with backpropagation. We close with a brief discussion of a number of additional issues surrounding the use of such algorithms, including what is known about their limiting behaviors as well as further considerations that might be used to help develop similar but potentially more powerful reinforcement learning algorithms.  相似文献   

12.
A multi-agent reinforcement learning algorithm with fuzzy policy is addressed in this paper. This algorithm is used to deal with some control problems in cooperative multi-robot systems. Specifically, a leader-follower robotic system and a flocking system are investigated. In the leader-follower robotic system, the leader robot tries to track a desired trajectory, while the follower robot tries to follow the reader to keep a formation. Two different fuzzy policies are developed for the leader and follower, respectively. In the flocking system, multiple robots adopt the same fuzzy policy to flock. Initial fuzzy policies are manually crafted for these cooperative behaviors. The proposed learning algorithm finely tunes the parameters of the fuzzy policies through the policy gradient approach to improve control performance. Our simulation results demonstrate that the control performance can be improved after the learning.  相似文献   

13.
熊珞琳  毛帅  唐漾  孟科  董朝阳  钱锋 《自动化学报》2021,47(10):2321-2340
为了满足日益增长的能源需求并减少对环境的破坏, 节能成为全球经济和社会发展的一项长远战略方针, 加强能源管理能够提高能源利用效率、促进节能减排. 然而, 可再生能源和柔性负载的接入使得综合能源系统(Integrated energy system, IES)发展成为具有高度不确定性的复杂动态系统, 给现代化能源管理带来巨大的挑战. 强化学习(Reinforcement learning, RL)作为一种典型的交互试错型学习方法, 适用于求解具有不确定性的复杂动态系统优化问题, 因此在综合能源系统管理问题中得到广泛关注. 本文从模型和算法的层面系统地回顾了利用强化学习求解综合能源系统管理问题的现有研究成果, 并从多时间尺度特性、可解释性、迁移性和信息安全性4个方面提出展望.  相似文献   

14.
人工神经网络(Artificial neural networks,ANNs)与强化学习算法的结合显著增强了智能体的学习能力和效率.然而,这些算法需要消耗大量的计算资源,且难以硬件实现.而脉冲神经网络(Spiking neural networks,SNNs)使用脉冲信号来传递信息,具有能量效率高、仿生特性强等特点,且有利于进一步实现强化学习的硬件加速,增强嵌入式智能体的自主学习能力.不过,目前脉冲神经网络的学习和训练过程较为复杂,网络设计和实现方面存在较大挑战.本文通过引入人工突触的理想实现元件——忆阻器,提出了一种硬件友好的基于多层忆阻脉冲神经网络的强化学习算法.特别地,设计了用于数据——脉冲转换的脉冲神经元;通过改进脉冲时间依赖可塑性(Spiking-timing dependent plasticity,STDP)规则,使脉冲神经网络与强化学习算法有机结合,并设计了对应的忆阻神经突触;构建了可动态调整的网络结构,以提高网络的学习效率;最后,以Open AI Gym中的CartPole-v0(倒立摆)和MountainCar-v0(小车爬坡)为例,通过实验仿真和对比分析,验证了方案的有效性和相对于传统强化学习方法的优势.  相似文献   

15.
多Agent系统中强化学习的研究现状和发展趋势   总被引:6,自引:1,他引:6  
本文对有关强化学习及其在多Agent系统中的应用等方面的研究现状、关键技术、问题和发展趋势进行了综述和讨论,试图给出强化学习目前研究的重点和发展方向。主要内容包括:(1)强化学习的框架结构;(2)几个有代表性的强化学习方法;(3)多Agent系统中强化学习的应用和问题。最后讨论了多Agent系统中应用强化学习所面临的挑战。  相似文献   

16.
深度强化学习是指利用深度神经网络的特征表示能力对强化学习的状态、动作、价值等函数进行拟合,以提升强化学习模型性能,广泛应用于电子游戏、机械控制、推荐系统、金融投资等领域。回顾深度强化学习方法的主要发展历程,根据当前研究目标对深度强化学习方法进行分类,分析与讨论高维状态动作空间任务上的算法收敛、复杂应用场景下的算法样本效率提高、奖励函数稀疏或无明确定义情况下的算法探索以及多任务场景下的算法泛化性能增强问题,总结与归纳4类深度强化学习方法的研究现状,同时针对深度强化学习技术的未来发展方向进行展望。  相似文献   

17.
吴军  徐昕  连传强  黄岩 《机器人》2011,33(3):379-384
提出一种分布式的核增强学习方法来优化多机器人编队控制性能.首先,通过添加虚拟领队机器人,结合分布式的跟随控制策略,实现基本的多机器人编队控制:其次,提出结合最小二乘策略迭代和策略评测的核增强学习方法,即利用基于核的最小二乘策略迭代算法离线获取初始的编队优化控制策略,再利用基于核的最小二乘策略计测算法实现编队控制策略的在...  相似文献   

18.
随机博弈框架下的多agent强化学习方法综述   总被引:4,自引:0,他引:4  
宋梅萍  顾国昌  张国印 《控制与决策》2005,20(10):1081-1090
多agent学习是在随机博弈的框架下,研究多个智能体间通过自学习掌握交互技巧的问题.单agent强化学习方法研究的成功,对策论本身牢固的数学基础以及在复杂任务环境中广阔的应用前景,使得多agent强化学习成为目前机器学习研究领域的一个重要课题.首先介绍了多agent系统随机博弈中基本概念的形式定义;然后介绍了随机博弈和重复博弈中学习算法的研究以及其他相关工作;最后结合近年来的发展,综述了多agent学习在电子商务、机器人以及军事等方面的应用研究,并介绍了仍存在的问题和未来的研究方向.  相似文献   

19.
分层增强学习在足球机器人比赛中的应用   总被引:4,自引:0,他引:4  
足球机器人的研究是一项挑战性的研究领域,为了设计出智能型的球员必须涉及到计算机、人工智能、视觉及机械学等方面的研究。球员的学习能力是体现其智能的主要标志。如何在不断改变的外界环境中选取合适的动作技巧是在机器人足球比赛中的一个关键问题。该文介绍了马尔可夫决策过程,在半马尔可夫决策模型下,利用分层增强学习算法对不同层次的动作学习和选取同时进行学习。在仿真平台上进行实验,结果表明该学习方法是非常有效的。  相似文献   

20.
李春贵 《计算机工程》2005,31(11):13-15
研究了优先扫描的强化学习方法,通过定义新的迹,把多步截断即时差分学习用于集成规划的优先扫描强化学习,用多步截断即时差分来定义扫描优先权,提出一种改进的优先扫描强化学习算法并进行仿真实验,实验结果表明,新算法的学习效率有明显的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号