首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
We have reported JAK-signaling modulators, CIS1 (cytokine-inducible SH2 protein-1), CIS3 and JAB (JAK2 binding protein), which are structurally related. In M1 myeloid leukemia cells, CIS3 was induced by neither interleukin 6 (IL6) nor interferon gamma (IFNgamma), while JAB was induced strongly by IFNgamma and slightly by IL6 and leukemia inhibitory factor (ILF). Forced expression of CIS3 and JAB in M1 cells prevented IL6- or LIF-induced growth arrest and differentiation, even when their expression levels were comparable to endogenous ones in several cell lines such as HEL, UT-7, IFNgamma-treated M1, and CTLL2 cells. Pretreatment of parental M1 cells with IFNgamma but not IFNbeta resulted in suppression of LIF-induced STAT3 activation and differentiation, further supporting that physiological level of JAB is sufficient to inhibit LIF-signaling. However, unlike JAB, CIS3 did not inhibit IFNgamma-induced growth arrest, suggesting a difference in cytokine specificity between CIS3 and JAB. CIS3 inhibited STAT3 activation with slower kinetics than JAB and allowed rapid c-fos induction and partial FcgammaRI expression in response to IL6. In 293 cells, CIS3 as well as JAB bound to JAK2 tyrosine kinase domain (JH1), and inhibited its kinase activity, however, the effect of CIS3 on tyrosine kinase activity was weaker than that of JAB, indicating that CIS3 possesses lower affinity to JAK kinases than JAB. These findings suggest that CIS3 is a weaker inhibitor than JAB against JAK signaling, and JAB and CIS3 possess different regulatory roles in cytokine signaling.  相似文献   

7.
8.
9.
10.
Cytokines play crucial roles in the growth and differentiation of hematopoietic cells. They bind to specific cell membrane receptors that usually do not possess intrinsic protein-tyrosine kinase activity. Janus kinases (JAKs) are cytoplasmic protein-tyrosine kinases that physically interact with intracellular domains of the cytokine receptors and have been implicated in playing important roles in signal transduction triggered by the cytokine-cytokine receptor interaction. However, it is still uncertain whether JAK activation alone suffices to induce cell proliferation. In this work, we modified Tyk2, a member of the JAK family, by adding a membrane localization sequence and a chemical dimerizer (coumermycin)-dependent dimerization sequence. The modified Tyk2 was activated in a coumermycin-dependent manner, and the activated Tyk2 conferred cytokine independence upon interleukin-3-dependent pro-B lymphoid cells. This cytokine-independent proliferation was completely inhibited by dominant-negative Ras. These results indicate that activation of JAK through membrane-proximal dimerization is sufficient to induce cell cycle progression and that Ras is essentially involved in JAK-triggered mitogenesis.  相似文献   

11.
12.
13.
Interaction between erythropoietin (EPO) and its membrane receptor induces the proliferation and differentiation of erythroid progenitors. EPO has been shown to activate the JAK2-STAT5 pathway in various hematopoietic cell lines, although the physiological role of this pathway is unclear. We have previously shown that epidermal growth factor activates a chimeric receptor bearing the extracellular domain of the epidermal growth factor receptor linked to the cytoplasmic domain of the EPO receptor, resulting in proliferation of interleukin-3-dependent hematopoietic cells and erythroid differentiation (globin synthesis) of EPO-responsive erythroleukemia cells. In the present study, we introduced various deletion and tyrosine to phenylalanine substitution in the cytoplasmic domain of the chimeric receptor and expressed these mutant chimeras in an EPO-responsive erythroleukemia cell line, ELM-I-1. Mutant chimeric receptors retaining either Tyr343 or Tyr401 could activate STAT5, judged by tyrosine-phosphorylation of STAT5 and induction of CIS, a target gene of STAT5. These mutants were able to induce erythroid differentiation. However, a chimeric receptor containing both Y343F and Y401F mutations could not activate STAT5 nor induce erythroid differentiation. Thus, Tyr343 or Tyr401 of the EPO receptor are independently necessary for erythroid differentiation as well as STAT5 activation. Moreover, exogenous expression of dominant-negative STAT5 suppressed EPO-dependent erythroid differentiation. These findings suggest that STAT5 plays an important role in erythroid differentiation through the EPO receptor cytoplasmic domain.  相似文献   

14.
The high-affinity receptor (R) for IL-5 consists of a unique alpha chain (IL-5R alpha) and a beta chain (beta c) that is shared with the receptors for IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF). We defined two regions of IL-5R alpha for the IL-5-induced proliferative response, the expression of nuclear proto-oncogenes, and the tyrosine phosphorylation of cellular proteins including beta c, SH2/SH3-containing proteins and JAK2 kinase. In the studies described here, we demonstrate that IL-5, IL-3 or GM-CSF stimulation induces the tyrosine phosphorylation of JAK2, and to a lesser extent JAK1, and of STAT5. Mutational analysis revealed that one of the proline residues, particularly Pro352 and Pro355, in the membrane-proximal proline-rich sequence (Pro352-Pro353-X-Pro355) of the cytoplasmic domain of IL-5R alpha is required for cell proliferation, and for both JAK1 and JAK2 activation. In addition, transfectants expressing chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c responded to IL-5 for proliferation and tyrosine phosphorylation of JAK1. Intriguingly, electrophoretic mobility shift assay analysis revealed that STAT5 was activated in cells showing either JAK1 or JAK2 tyrosine phosphorylation. These results indicate that activation of JAK1, JAK2 and STAT5 is critical to coupling IL-5-induced tyrosine phosphorylation and ultimately mitogenesis, and that Pro352 and Pro355 in the proline-rich sequence appear to play more essential roles in cell growth and in both JAK1/STAT5 and JAK2/STAT5 activation than Pro353 does.  相似文献   

15.
The receptors for the I1-3/IL-5/GM-CSF cytokine family are composed of a heterodimeric complex of a cytokine-specific alpha chain and a common beta chain (betac). Binding of IL-3/IL-5/GM-CSF to their respective receptors rapidly induces activation of multiple intracellular signalling pathways, including the Ras-Raf-ERK, the JAK/STAT, the phosphatidylinositol 3-kinase PKB, and the JNK/SAPK and p38 signalling pathways. This review focuses on recent advancements in understanding how these different signalling pathways are activated by IL-3/IL-5/GM-CSF receptors, and how the individual pathways contribute to the pleiotropic effects of IL-3/IL-5/GM-CSF on their target cells, including proliferation, differentiation, survival, and effector functions.  相似文献   

16.
The high-affinity human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR) consists of an alpha (GMRalpha) and a common beta (betac) subunit. The intracellular domain of betac has been extensively characterized and has been shown to be critical for the activation of both the JAK/STAT and MAP kinase pathways. The function of the intracellular domain of GMRalpha, however, is not as well characterized. To determine the role of this domain in GMR signaling, an extensive structure-function analysis was performed. Truncation mutants alpha362, alpha371, and alpha375 were generated, as well as the site-directed mutants alphaVQVQ and alphaVVVV. Although alpha375beta, alphaVQNQbeta, and alphaVVVVbeta stimulated proliferation in response to human GM-CSF, the truncation mutants alpha362beta and alpha371beta were incapable of transducing a proliferative signal. In addition, both alpha371 and alphaVVVV were expressed at markedly reduced levels, indicating the importance of residues 372 to 374 for proper protein expression. More importantly, we show that GMRalpha plays a direct role in the activation of the JAK/STAT pathway, and electrophoretic mobility shift assays (EMSA) indicate that both GMRalpha and betac play a role in determining the STAT5 DNA binding complex activated by the GMR. Thus, the intracellular domain of the human GMRalpha is important for activation of the JAK/STAT pathway and protein stabilization.  相似文献   

17.
18.
19.
20.
IL-6 mediates growth of some human multiple myeloma (MM) cells and IL-6-dependent cell lines. Although three IL-6 signaling pathways (STAT1, STAT3, and Ras-dependent MAPK cascade) have been reported, cascades mediating IL-6-triggered growth of MM cells and cell lines are not defined. In this study, we therefore characterized IL-6 signaling cascades in MM cell lines, MM patient cells, and IL-6-dependent B9 cells to determine which pathway mediates IL-6-dependent growth. IL-6 induced phosphorylation of JAK kinases and gp130, regardless of the proliferative response of MM cells to this growth factor. Accordingly, we next examined downstream IL-6 signaling via the STAT3, STAT1, and Ras-dependent mitogen-activated protein kinase (MAPK) cascades. IL-6 triggered phosphorylation of STAT1 and/or STAT3 in MM cells independent of their proliferative response to IL-6. In contrast, IL-6 induced phosphorylation of Shc and its association with Sos1, as well as phosphorylation of MAPK, only in MM cells and B9 cells that proliferated in response to IL-6. Moreover, MAPK antisense, but not sense, oligonucleotide inhibited IL-6-induced proliferation of these cells. These data suggest that STAT1 and/or STAT3 activation may occur independently of the proliferative response to IL-6, and that activation of the MAPK cascade is an important distal pathway for IL-6-mediated growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号