首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Approximation accuracy of some neuro-fuzzy approaches   总被引:3,自引:0,他引:3  
Many methods have been proposed in the literature for designing fuzzy systems from input-output data (the so-called neuro-fuzzy methods), but very little was done to analyze the performance of the methods from a rigorous mathematical point of view. In this paper, we establish approximation bounds for two of these methods - the table lookup scheme proposed by Wang et al. (1992) and the clustering method studied by Wang (1993, 1997). We derive detailed formulas of the error bounds between the nonlinear function to be approximated and the fuzzy systems designed using the methods based on input-output data. These error bounds show explicitly how the parameters in the two methods influence their approximation capability. We also propose modified versions for the two methods such that the designed fuzzy systems are well-defined over the whole input domain  相似文献   

2.
In this work, we are interested in the problem of task scheduling on large‐scale data‐intensive computing systems. In order to achieve good performance, one must construct not only good task schedules but also good data allocation across nodes on the system, since before a task can be executed, it must have access to data distributed on the system. In this article, we present a general formulation of a static problem that combines both scheduling and replication problems in data‐intensive distributed systems. We show that this problem does not admit an approximation algorithm. However, considering a restricted version of the problem that considers some practical constraints, an approximation algorithm can be designed. From a practical perspective, we introduce a novel heuristic for the problem that is based on nodes clustering. We compare the heuristic with two adapted approaches from other works in the literature by computational simulations using an extensive set of instances based on real computer grids. We show that our heuristic often obtains the best solutions and also runs faster than other approaches.  相似文献   

3.
We describe the use of support vector machines (SVMs) for continuous speech recognition by incorporating them in segmental minimum Bayes risk decoding. Lattice cutting is used to convert the Automatic Speech Recognition search space into sequences of smaller recognition problems. SVMs are then trained as discriminative models over each of these problems and used in a rescoring framework. We pose the estimation of a posterior distribution over hypotheses in these regions of acoustic confusion as a logistic regression problem. We also show that GiniSVMs can be used as an approximation technique to estimate the parameters of the logistic regression problem. On a small vocabulary recognition task we show that the use of GiniSVMs can improve the performance of a well trained hidden Markov model system trained under the Maximum Mutual Information criterion. We also find that it is possible to derive reliable confidence scores over the GiniSVM hypotheses and that these can be used to good effect in hypothesis combination. We discuss the problems that we expect to encounter in extending this approach to large vocabulary continuous speech recognition and describe initial investigation of constrained estimation techniques to derive feature spaces for SVMs.  相似文献   

4.
Network of workstation (NOW) is a cost-effective alternative to massively parallel supercomputers. As commercially available off-the-shelf processors become cheaper and faster, it is now possible to build a cluster that provides high computing power within a limited budget. However, a cluster may consist of different types of processors and this heterogeneity complicates the design of efficient collective communication protocols. For example, it is a very hard combinatorial problem to find an optimal reduction schedule for such heterogeneous clusters. Nevertheless, we show that a simple technique called slowest-node-first (SNF) is very effective in designing efficient reduction protocols for heterogeneous clusters. First, we show that SNF is actually a 2-approximation algorithm, which means that an SNF schedule length is always within twice of the optimal schedule length, no matter what kind of cluster is given. In addition, we show that SNF does give the optimal reduction time when the cluster consists of two types of processors, when the ratio of communication speed between them is at least two. When the communication speed ratio is less than two, we develop a dynamic programming technique to find the optimal schedule. Our dynamic programming utilizes the monotone property of the objective function, and can significantly reduce the amount of computation time. Finally, combined with an approximation algorithm for broadcast 2004, we propose an all-reduction algorithm which sends the reduction answer to all processors, with approximation ratio 3.5. We conduct three groups of experiments. First, we show that SNF performs better than the built-in MPI_Reduce in a test cluster. Second, we observe a factor of 93 times saving in computation time to find the optimal schedule, when compared with a naive dynamic programming implementation. Thirdly, we apply the theoretical results to a branch-and-bound search and show that they can reduce the search time of the optimal reduction schedule by a factor of 500, when the cluster has three kinds of processors.  相似文献   

5.
Two-Mode Adaptive Fuzzy Control With Approximation Error Estimator   总被引:1,自引:0,他引:1  
In this paper, we propose a two-mode adaptive fuzzy controller with approximation error estimator. In the learning mode, the controller employs some modified adaptive laws to tune the fuzzy system parameters and an approximation error estimator to compensate for the inherent approximation error. In the operating mode, the fuzzy system parameters are fixed, only the estimator is updated online. Mathematically, we show that the closed-loop system is stable in the sense that all the variables are bounded in both modes. We also establish mathematical bounds on the tracking error, state vector, control signal and the RMS error. Using these bounds, we show that controller's design parameters can be chosen to achieve desired control performance. After that, an algorithm to automatically switch the controller between two modes is presented. Finally, simulation studies of an inverted pendulum system and a Chua's chaotic circuit demonstrate the usefulness of the proposed controller.  相似文献   

6.
We analyze the performance of simple algorithms for matching two planar point sets under rigid transformations so as to minimize the directed Hausdorff distance between the sets. This is a well studied problem in computational geometry. Goodrich, Mitchell, and Orletsky presented a very simple approximation algorithm for this problem, which computes transformations based on aligning pairs of points. They showed that their algorithm achieves an approximation ratio of 4. We introduce a modification to their algorithm, which is based on aligning midpoints rather than endpoints. This modification has the same simplicity and running time as theirs, and we show that it achieves a better approximation ratio of roughly 3.14. We also analyze the approximation ratio in terms of a instance-specific parameter that is based on the ratio between diameter of the pattern set to the optimum Hausdorff distance. We show that as this ratio increases (as is common in practical applications) the approximation ratio approaches 3 in the limit. We also investigate the performance of the algorithm by Goodrich et al. as a function of this ratio, and present nearly matching lower bounds on the approximation ratios of both algorithms. This work was supported by the National Science Foundation under grants CCR-0098151 and CCF-0635099.  相似文献   

7.
Fast Sparse Approximation for Least Squares Support Vector Machine   总被引:5,自引:0,他引:5  
In this paper, we present two fast sparse approximation schemes for least squares support vector machine (LS-SVM), named FSALS-SVM and PFSALS-SVM, to overcome the limitation of LS-SVM that it is not applicable to large data sets and to improve test speed. FSALS-SVM iteratively builds the decision function by adding one basis function from a kernel-based dictionary at one time. The process is terminated by using a flexible and stable epsilon insensitive stopping criterion. A probabilistic speedup scheme is employed to further improve the speed of FSALS-SVM and the resulting classifier is named PFSALS-SVM. Our algorithms are of two compelling features: low complexity and sparse solution. Experiments on benchmark data sets show that our algorithms obtain sparse classifiers at a rather low cost without sacrificing the generalization performance  相似文献   

8.
Private approximation of search problems deals with finding approximate solutions to search problems while disclosing as little information as possible. The focus of this work is on private approximation of the vertex cover problem and two well studied clustering problems – k-center and k-median. Vertex cover was considered in (Beimel, Carmi, Nissim, and Weinreb, STOC, 2006) and we improve their infeasibility results. Clustering algorithms are frequently applied to sensitive data, and hence are of interest in the contexts of secure computation and private approximation. We show that these problems do not admit private approximations, or even approximation algorithms that are allowed to leak a significant number of bits of information. For the vertex cover problem we show a tight infeasibility result: every algorithm that ρ(n)-approximates vertex-cover must leak Ω(n/ρ(n)) bits (where n is the number of vertices in the graph). For the clustering problems we prove that even approximation algorithms with a poor approximation ratio must leak Ω(n) bits (where n is the number of points in the instance). For these results we develop new proof techniques, which are simpler and more intuitive than those in Beimel et al., and yet allow for stronger infeasibility results. Our proofs rely on the hardness of the promise problem where a unique optimal solution exists (Valiant and Vazirani, Theoretical Computer Science, 1986), on the hardness of approximating witnesses for NP-hard problems (Kumar and Sivakumar, CCC, (1999) and Feige, Langberg, and Nissim, APPROX, (2000)), and on a simple random embedding of instances into bigger instances.  相似文献   

9.
This work focus on fast nearest neighbor (NN) search algorithms that can work in any metric space (not just the Euclidean distance) and where the distance computation is very time consuming. One of the most well known methods in this field is the AESA algorithm, used as baseline for performance measurement for over twenty years. The AESA works in two steps that repeats: first it searches a promising candidate to NN and computes its distance (approximation step), next it eliminates all the unsuitable NN candidates in view of the new information acquired in the previous calculation (elimination step).This work introduces the PiAESA algorithm. This algorithm improves the performance of the AESA algorithm by splitting the approximation criterion: on the first iterations, when there is not enough information to find good NN candidates, it uses a list of pivots (objects in the database) to obtain a cheap approximation of the distance function. Once a good approximation is obtained it switches to the AESA usual behavior. As the pivot list is built in preprocessing time, the run time of PiAESA is almost the same than the AESA one.In this work, we report experiments comparing with some competing methods. Our empirical results show that this new approach obtains a significant reduction of distance computations with no execution time penalty.  相似文献   

10.
An important strength of learning classifier systems (LCSs) lies in the combination of genetic optimization techniques with gradient-based approximation techniques. The chosen approximation technique develops locally optimal approximations, such as accurate classification estimates, Q-value predictions, or linear function approximations. The genetic optimization technique is designed to distribute these local approximations efficiently over the problem space. Together, the two components develop a distributed, locally optimized problem solution in the form of a population of expert rules, often called classifiers. In function approximation problems, the XCSF classifier system develops a problem solution in the form of overlapping, piecewise linear approximations. This paper shows that XCSF performance on function approximation problems additively benefits from: 1) improved representations; 2) improved genetic operators; and 3) improved approximation techniques. Additionally, this paper introduces a novel closest classifier matching mechanism for the efficient compaction of XCS's final problem solution. The resulting compaction mechanism can boil the population size down by 90% on average, while decreasing prediction accuracy only marginally. Performance evaluations show that the additional mechanisms enable XCSF to reliably, accurately, and compactly approximate even seven dimensional functions. Performance comparisons with other, heuristic function approximation techniques show that XCSF yields competitive or even superior noise-robust performance.  相似文献   

11.
Multiple instance learning (MIL) is a binary classification problem with loosely supervised data where a class label is assigned only to a bag of instances indicating presence/absence of positive instances. In this paper we introduce a novel MIL algorithm using Gaussian processes (GP). The bag labeling protocol of the MIL can be effectively modeled by the sigmoid likelihood through the max function over GP latent variables. As the non-continuous max function makes exact GP inference and learning infeasible, we propose two approximations: the soft-max approximation and the introduction of witness indicator variables. Compared to the state-of-the-art MIL approaches, especially those based on the Support Vector Machine, our model enjoys two most crucial benefits: (i) the kernel parameters can be learned in a principled manner, thus avoiding grid search and being able to exploit a variety of kernel families with complex forms, and (ii) the efficient gradient search for kernel parameter learning effectively leads to feature selection to extract most relevant features while discarding noise. We demonstrate that our approaches attain superior or comparable performance to existing methods on several real-world MIL datasets including large-scale content-based image retrieval problems.  相似文献   

12.
This paper considers the problem of constructing data aggregation trees in wireless sensor networks (WSNs) for a group of sensor nodes to send collected information to a single sink node. The data aggregation tree contains the sink node, all the source nodes, and some other non-source nodes. Our goal of constructing such a data aggregation tree is to minimize the number of non-source nodes to be included in the tree so as to save energies. We prove that the data aggregation tree problem is NP-hard and then propose an approximation algorithm with a performance ratio of four and a greedy algorithm. We also give a distributed version of the approximation algorithm. Extensive simulations are performed to study the performance of the proposed algorithms. The results show that the proposed algorithms can find a tree of a good approximation to the optimal tree and has a high degree of scalability.  相似文献   

13.
This paper considers the problem of constructing data aggregation trees in wireless sensor networks (WSNs) for a group of sensor nodes to send collected information to a single sink node. The data aggregation tree contains the sink node, all the source nodes, and some other non-source nodes. Our goal of constructing such a data aggregation tree is to minimize the number of non-source nodes to be included in the tree so as to save energies. We prove that the data aggregation tree problem is NP-hard and then propose an approximation algorithm with a performance ratio of four and a greedy algorithm. We also give a distributed version of the approximation algorithm. Extensive simulations are performed to study the performance of the proposed algorithms. The results show that the proposed algorithms can find a tree of a good approximation to the optimal tree and has a high degree of scalability.  相似文献   

14.
We consider a multi-agent scheduling problem on a single machine in which each agent is responsible for his own set of jobs and wishes to minimize the total weighted completion time of his own set of jobs. It is known that the unweighted problem with two agents is NP-hard in the ordinary sense. For this case, we can reduce our problem to a Multi-Objective Shortest-Path (MOSP) problem and this reduction leads to several results including Fully Polynomial Time Approximation Schemes (FPTAS). We also provide an efficient approximation algorithm with a reasonably good worst-case ratio.  相似文献   

15.
Our work is motivated by the need to manage data items on a collection of storage devices to handle dynamically changing demand. As demand for data items changes, for performance reasons, the system needs to automatically respond to changes in demand for different data items. The problem of computing a migration plan among the storage devices is called the data migration problem. This problem was shown to be NP-hard, and an approximation algorithm achieving an approximation factor of 9.5 was presented for the half-duplex communication model in Khuller, Kim and Wan (Algorithms for data migration with cloning. SIAM J. Comput. 33(2):448–461, 2004). In this paper we develop an improved approximation algorithm that gives a bound of 6.5+o(1) using new ideas. In addition, we develop better algorithms using external disks and get an approximation factor of 4.5 using external disks. We also consider the full duplex communication model and develop an improved bound of 4+o(1) for this model, with no external disks.  相似文献   

16.
Splines are part of the standard toolbox for the approximation of functions and curves in ?d. Still, the problem of finding the spline that best approximates an input function or curve is ill‐posed, since in general this yields a “spline” with an infinite number of segments. The problem can be regularized by adding a penalty term for the number of spline segments. We show how this idea can be formulated as an ?0‐regularized quadratic problem. This gives us a notion of optimal approximating splines that depend on one parameter, which weights the approximation error against the number of segments. We detail this concept for different types of splines including B‐splines and composite Bézier curves. Based on the latest development in the field of sparse approximation, we devise a solver for the resulting minimization problems and show applications to spline approximation of planar and space curves and to spline conversion of motion capture data.  相似文献   

17.
18.
In this article we present an approach to the segmentation problem by a piecewise approximation of the given image with continuous functions. Unlike the common approach of Mumford and Shah in our formulation of the problem the number of segments is a parameter, which can be estimated. The problem can be stated as: Compute the optimal segmentation with a fixed number of segments, then reduce the number of segments until the segmentation result fulfills a given suitability. This merging algorithm results in a multi-objective optimization, which is not only resolved by a linear combination of the contradicting error functions. To constrain the problem we use a finite dimensional vector space of functions in our approximation and we restrict the shape of the segments. Our approach results in a multi-objective optimization: On the one hand the number of segments is to be minimized, on the other hand the approximation error should also be kept minimal. The approach is sound theoretically and practically: We show that for L 2-images a Pareto-optimal solution exists and can be computed for the discretization of the image efficiently.  相似文献   

19.
提出了一种基于法矢控制的 B 样条曲面逼近的渐进迭代逼近(PIA)算法。一方面该方法将离散数据点的切失、曲率、法矢等几何特征充分应用到离散数据点的逼近问题上,利用数据点两个方向的切矢构造出数据点的法矢约束来控制逼近曲面形状,相比于无法矢控制的 B 样条曲面逼近的渐进迭代逼近(PIA)方法,逼近曲面更光顺,可获得更好的逼近效果。另一方面由于该算法选取主特征点作为控制顶点,所以允许在曲面拟合中控制顶点的数目小于数据点的数目。而且PIA算法的每次迭代过程中的各个步骤都是独立的,很容易被应用到并行计算上,可提高计算效率。本文还给出了一些实例来验证该算法的有效性。  相似文献   

20.
Consider a graph G=(V,E) of order n. In the minimum graph-coloring problem we try to color V with as few colors as possible so that no two adjacent vertices receive the same color. This problem is among the first ones proved to be intractable, and hence, it is very unlikely that an optimal polynomial-time algorithm could ever be devised for it. In this paper, we survey the main polynomial time approximation algorithms (the ones for which theoretical approximability bounds have been studied) for the minimum graph-coloring and we discuss their approximation performance and their complexity. Finally, we further improve the approximation ratio for graph-coloring. Received October 5, 2001; revised November 15, 2002 Published online: February 20, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号