首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, fatigue life prediction of U‐notched polymethyl methacrylate (PMMA) plate is numerically investigated based on the combination of fatigue damage mechanism and fatigue crack propagation mechanism. First, strength and stiffness degeneration criterions during the fatigue process are established on the basis of nonlinear progressive damage evolution, and the fatigue crack initiation life is estimated. Second, fatigue crack propagation phase is analysed through virtual crack closure technique. The fatigue crack propagation life before totally fracture is also predicted. Finally, finite element models of PMMA plate weakened by lateral symmetric U‐notch are built up using ABAQUS, and the total fatigue life of notched plate is calculated by combining the crack initiation life with the crack propagation life. These results will play an important role for evaluating the fatigue life of U‐notched PMMA plate.  相似文献   

2.
This study investigated the method of estimating the fatigue strength of small notched Ti-6Al-4V specimen using the theory of critical distance that employs the stress distribution in the vicinity of the notch root. Circumferential-notched round-bar fatigue tests were conducted to quantify the effects of notch radius and notch depth on fatigue strength. The fatigue tests show that the larger notch radius increases the fatigue strength and the greater notch depth decreases the fatigue strength. The theory of critical distance assumes that fatigue damage can be correctly estimated only if the entire stress field damaging the fatigue fracture process zone is taken into account. Critical distance stress is defined as the average stress within the critical distance from notch root. The region from the notch root to the critical distance corresponds to the fatigue fracture process zone for crack initiation. It has been found that a good correlation exists between the critical distance stress and crack initiation life of small notched specimens if the critical distance is calibrated by the two notched fatigue failure curves of different notch root radii. The calibrated critical distances did not vary clearly over a wide range of fatigue failure cycles from medium-cycle low-cycle fatigue regime to high-cycle fatigue regime and have an almost constant value. This critical distance corresponds to the size of crystallographic facet at the fatigue crack initiation site for the wide range of fatigue cycles.  相似文献   

3.
Experimental analyses on the structural response caused by local fatigue damage accumulation in welded details are accomplished to perform failure process and nonlinear effect analysis at different structural levels. The experiment is carried out by using welded compact tension (CT) specimens and a scaled truss specimen, and all of them have a notch at the weld toe to facilitate damage initiation. Cyclic loads are applied to those specimens to generate accumulative fatigue damage, respectively. The process of fatigue accumulation including initiation and propagation of fatigue cracks in the welded detail and resultant structural responses of CT specimens and the truss are measured with integration of multiple testing techniques. Multi‐scale experimental results show that microscopic‐/mesoscopic‐concentrated strain and extension of plastic zone in the vicinity of notch tip are both affected significantly by the fatigue damage accumulation and present appreciable nonlinear behaviour; however, the macroscopic response such as the frequency and stiffness parameters of the welded truss specimen are less sensitive to the low‐level fatigue damage. It is concluded that the fatigue failure of the welded truss is a multi‐scale progressive process due to fatigue damage trans‐scale evolving, in which the local meso‐damage firstly affects local strain of plastic zone in the vicinity of the notch tip, and then fatigue damage evolving from meso‐ to macro‐scale affects nonlinear responses of the damaged components; lastly, the fatigue failure could be expected as the results of the propagation of macroscopic fatigue cracks.  相似文献   

4.
The effect of surface compressive residual stresses (RS) induced by surface grinding and polishing on the gigacycle fatigue behavior of medium‐carbon high‐chromium alloy cold work tool steel was evaluated. Two test series were performed: Specimens of series I revealed high compressive RS of about ‐800 MPa at the surface, resulting from grinding with fine emery paper, which treatment had definitely a beneficial influence on the fatigue endurance strength. The existence of surface RS was also revealed to be responsible for the location of the fatigue crack initiation. High compressive RS favored internal crack origins. In this case crack nucleation sites were primary carbide clusters in the interior of the specimen, forming so‐called fish‐eyes at the fracture surface. In contrast, specimens of test series II had only very low RS, which enabled crack initiation near/at the surface at primary carbides/clusters. Furthermore, it has been shown that the high initial RS are prone to partial relaxation through cyclic loading for which the mechanisms are currently unknown. In this case near‐surface induced failure was obtained. It was possible to confirm the experimentally obtained data by the use of the concept of local fatigue strength as function of effective RS. The relaxation of high initial RS was experimentally confirmed through RS measurements at runout specimens (1010 cycles without failure).  相似文献   

5.
The objective of this work is to verify numerically the adequacy of the ENF and the ELS tests to determine the fracture toughness under mode II loading of cortical bovine bone tissue. A data‐reduction scheme based on the specimen compliance and the equivalent crack concept is proposed to overcome the difficulties inherent to crack monitoring during its growth. A cohesive damage model was used to simulate damage initiation and growth, thus assessing the efficacy of the proposed data‐reduction scheme. The influences of the initial crack length, local strength and toughness on the measured fracture energy were analysed, taking into account the specimen length restriction. Some limitations related to spurious influence on the fracture process zone of the central loading in the ENF test, and clamping conditions in the ELS test were identified. However, it was verified that a judicious selection of the geometry allows, in both cases, a rigorous estimation of bone toughness in mode II.  相似文献   

6.
Rice's analytical Mode III solution for the relationship between anti-plane stress and anti-plane strain was used to determine the small scale plastic yielding at the tip of a two-dimensional blunt notch. The results were applied to fatigue loading. The plastic zone size and crack opening displacement derived in the present analysis were determined as functions of applied stress, geometric factors (notch radius and length) and material properties (yield stress and the work hardening rate). The minimum stress intensity required for plastic yielding at a blunt notch tip was postulated to be the experimentally observed threshold stress intensity for fatigue crack initiation. The threshold stress intensity so determined depends not only on the notch geometry but also on material properties. There is good agreement with calculated and measured values of the threshold stress intensity for fatigue crack initiation.  相似文献   

7.
Mixed‐mode dynamic fracture behaviour of cast aluminium alloy ZL205A thin plates with narrow U‐notch was studied by split Hopkinson tensile bar apparatus. Specimens with different loading angles were designed to realize different fracture modes. The same loading condition was maintained during the tests. Recovery specimens show that crack propagates along the notch direction. Force–elongation relations show that with the loading angle increasing, the fracture force increases while the final elongation decreases. Deformation and fracture process was observed by a high‐speed camera. Displacement distribution around the crack was calculated through digital image correlation technique. Based on the photos and displacement results, initiation time of the crack was derived. Besides, two stress components (normal stress and shear stress) applied on the fracture surface were investigated. Results show that crack initiation stresses at different loading angles satisfy the ellipse equation. Pure mode I and II fracture stresses are 425.3 and 236.7 MPa, respectively. Furthermore, specific fracture energy of different specimens was calculated. The energy data vary with loading angle and located on an approximate upward parabolic curve. From the curve, the minimum specific fracture energy of the thin plate specimen is 42.0 kJ/m2 under loading angle of 76.3°.  相似文献   

8.
In order to investigate the effects of stress concentration on low cycle fatigue properties and fracture behaviour of a nickel‐based powder metallurgy superalloy, FGH97, at elevated temperature, the low cycle fatigue tests have been conducted with semi‐circular and semi‐elliptical single‐edge notched plate specimens at 550 and 700 °C. The results show that the fatigue life of the notched specimen decreases with the increase of stress concentration factor and the fatigue crack initiation life evidently decreases because of the defect located in the stress concentration zone. Moreover, the plastic deformation induced by notch stress concentration affects the initial crack occurrence zone. The angle α of the crack occurrence zone is within ±10° of notch bisector for semi‐circular notched specimens and ±20° for semi‐elliptical notched specimens. The crack propagation rate decreases to a minimum at a certain length, D, and then increases with the growth of the crack. The crack propagation rate of the semi‐elliptical notched specimen decelerates at a faster rate than that of the semi‐circular notched specimen because of the increase of the notch plasticity gradient. The crack length, D, is affected by both the applied load and the notch plasticity gradient. In addition, the fracture mechanism is shown to transition from transgranular to intergranular as temperature increases from 550 to 700 °C, which would accelerate crack propagation and reduce the fatigue life.  相似文献   

9.
ABSTRACT Fractures from tests on 2014‐T6511 and 2024‐T3 test coupons under specially designed programmed loading reveal voids with distinct fatigue markings. These ‘fatigue voids’ appear to form as a consequence of the separation of noncoherent secondary particulates from the matrix in early fatigue. The process of their formation is through the initiation, growth and coalescence of multiple interfacial cracks around the particulate. Such voids become visible on the fatigue fracture surface if and when the crack front advances through them. In vacuum, each fatigue void is the potential initiator of an embedded penny‐shaped crack. The one closest to the specimen surface is likely to become the dominant crack, indicating that fatigue voids appear to be the likely origins of the dominant crack in vacuum. In air, the dominant crack forms at the notch surface and grows much faster, giving less opportunity for multiple internal cracks to spawn off from the innumerable internal fatigue‐voids. Thus in air, fatigue voids do not appear to affect the fatigue process at low and intermediate growth rates. At high crack growth rates involving considerable crack tip shear, slip planes with particulate concentration offer the path of least resistance. This explains the increasing density of fatigue voids with growth rate. Very high growth rates signal the onset of a quasi‐static crack growth component that manifests itself through growing clusters of microvoid coalescence associated with static fracture. Fatigue voids are likely to form in other Al‐alloys with secondary noncoherent particulates. They have nothing in common with microvoids associated with ductile fracture.  相似文献   

10.
11.
Structures are subjected to cyclic loads that can vary in direction and magnitude, causing constant amplitude mode I simulations to be too simplistic. This study presents a new approach for fatigue crack propagation in ductile materials that can capture mixed-mode loading and overloading. The extended finite element method is used to deal with arbitrary crack paths. Furthermore, adaptive meshing is applied to minimize computation time. A fracture process zone ahead of the physical crack tip is represented by means of cohesive tractions from which the energy release rate, and thus the stress intensity factor can be extracted for an elastic-plastic material. The approach is therefore compatible with the Paris equation, which is an empirical relation to compute the fatigue crack growth rate. Two different models to compute the cohesive tractions are compared. First, a cohesive zone model with a static cohesive law is used. The second model is based on the interfacial thick level set method in which tractions follow from a given damage profile. Both models show good agreement with a mode I analytical relation and a mixed-mode experiment. Furthermore, it is shown that the presented models can capture crack growth retardation as a result of an overload.  相似文献   

12.
This study presents the effect of residual stresses on cleavage fracture toughness by using the cohesive zone model under mode I, plane stain conditions. Modified boundary layer simulations were performed with the remote boundary conditions governed by the elastic K‐field and T‐stress. The eigenstrain method was used to introduce residual stresses into the finite element model. A layer of cohesive elements was deployed ahead of the crack tip to simulate the fracture process zone. A bilinear traction–separation‐law was used to characterize the behaviour of the cohesive elements. It was assumed that the initiation of the crack occurs when the opening stress drops to zero at the first integration point of the first cohesive element ahead of the crack tip. Results show that tensile residual stresses can decrease the cleavage fracture toughness significantly. The effect of the weld zone size on cleavage fracture toughness was also investigated, and it has been found that the initiation toughness is the linear function of the size of the geometrically similar weld. Results also show that the effect of the residual stress is stronger for negative T‐stress while its effect is relatively smaller for positive T‐stress. The influence of damage parameters and material hardening was also studied.  相似文献   

13.
A model for the simulation of damage initiation and subsequent propagation under cyclic loading is proposed. The basis for the formulation is a cohesive law that combines phenomenological SN-curves for damage initiation with a fracture and damage mechanics approach for crack propagation. The evolution of the damage variable is expressed as a function of fatigue cycles. The model is independently calibrated for mode I and mode II loading using SN-curves and Paris-law coefficients obtained from simple coupon tests. The model was applied to three initiation-driven cases: Bending of 90° laminates, the Short Beam Shear test and the Double Notched Shear test. The predictions for the first two cases showed an excellent correlation with experimental data. Some modifications to the model were required when applying it to the Double Notched Shear test.  相似文献   

14.
This work deals with the simulation of the fatigue crack growth (FCG) in bonded joints. In particular a cohesive damage model is implemented in the commercial software Abaqus, in order to take into account for the damage produced by fatigue loading. The crack growth rate is evaluated with different Paris-like power laws expressed in terms of strain energy release rate. The crack growth rate is then translated into a variation of the damage distribution over the cohesive zone setting an equivalence between the increment of crack length and the increment of damage. The model takes also into account mixed mode I/II conditions. In this work the validity of the model is tested by comparison with theoretical trends for conditions of pure mode I, pure mode II and mixed mode loading. In the case of mixed mode conditions, different models are implemented for the crack growth rate computation. The results of the model are in very good agreement with the expected trends, therefore the model is adequate to simulate the fatigue crack growth behaviour of bonded joint.  相似文献   

15.
采用成组法和升降法开展了室温某17-4PH末级长叶片叶根纵、横方向光滑与缺口试样的疲劳试验,获得了两个方向上材料的S-N曲线,并对典型疲劳断裂试样进行了断口宏微观形貌观察。结果表明:叶片叶根纵、横方向的疲劳强度基本一致,在长寿命区,纵向疲劳强度略高于横向;光滑试样的疲劳断裂主要呈现单裂纹源特征,而缺口试样呈现多裂纹源汇聚的断裂形貌。结合试样缺口根部的弹塑性应变分析,进一步讨论了叶片叶根纵、横方向的疲劳缺口效应。  相似文献   

16.
An investigation of the branching characteristics of small PMMA single edge notched tensile (SENT) specimens is presented. The influence of notch depth and specimen thickness was examined and it was found that branching only occurred for thicker specimens and very short notch depths. The location at which successful branching occurred was very consistent for a given notch depth. Subsequently, however, a statistical variation of branching patterns was observed.A series of simulations was then performed to provide further insight into these tests and in particular to examine the evolution of the fracture process region ahead of the running crack. A finite volume/cohesive zone formulation was used to model micro-crack nucleation and dynamic interaction in the process zone. The cohesive strength and fracture resistance were estimated from unnotched tensile tests and the application of LEFM to the notch test data. Even though a very simple criterion was used to govern the insertion and subsequent behaviour of the cohesive surfaces in the model, many of the experimental observations were reproduced, including high frequency oscillations in crack velocity, the substantial increase in the fracture surface area due to the formation of subsurface micro-cracks, and the location at which successful branching took place.  相似文献   

17.
Fatigue crack initiation and propagation behaviours were studied based on the dynamic response simulation by the three‐dimensional finite‐element analysis (FEA) and dynamic response experiments for tensile‐shear spot‐welded joints. The entire fatigue propagation behaviour from the surface elliptical cracks at the initiation stage to the through thickness cracks at the final stage was taken into consideration during the three‐dimensional FEA dynamic response simulations. The results of the simulations and experiments found that the fatigue cracks of spot‐welded joint from initial detectable crack sizes to crack propagation behaviour could be described by three stages. Approximately one‐half of the total fatigue life was taken in stage I, which includes micro‐crack nucleation and the small crack growth process; 20% of the total fatigue life in stage II, in which the existing surface crack propagates through the thickness of sheet and 30% of the total fatigue life in stage III, during which the through thickness crack propagates along the direction of plate width to the final failure. According to the relationship between the crack length and depth and the dynamic response frequency during the simulated fatigue damage process, the definition of fatigue crack initiation and propagation stages was proposed. The analysis will provide some information for the fatigue life prediction of the spot‐welded structures.  相似文献   

18.
19.
The effect of laser shock peening (LPS) in the fatigue crack growth behaviour of a 2024‐T3 aluminium alloy with various notch geometries was investigated. LPS was performed under a ‘confined ablation mode’ using an Nd: glass laser at a laser power density of 5 GW cm?2. A black paint coating layer and water layer was used as a sacrificial and plasma confinement layer, respectively. The shock wave propagates into the material, causing the surface layer to deform plastically, and thereby, develop a residual compressive stress at the surface. The residual compressive stress as a function of depth was measured by X‐ray diffraction technique. The fatigue crack initiation life and fatigue crack growth rates of an Al alloy with different preexisting notch configurations were characterized and compared with those of the unpeened material. The results clearly show that LSP is an effective surface treatment technique for suppressing the fatigue crack growth of Al alloys with various preexisting notch configurations.  相似文献   

20.
It is experimentally demonstrated in this work that the application of cyclic compression loads to polymeric materials, specifically high-density polyethylene and polystyrene, results in the nucleation and propagation of stable fatigue cracks. The cracks grow at a progressively slower rate along the plane of the notch in a direction perpendicular to the far-field cyclic compression axis. The overall characteristics of this compression fatigue fracture are macroscopically similar to those seen in metals, ceramics, as well as discontinuously reinforced inorganic composites. It is reasoned that the origin of this Mode I compression fatigue effect is the generation of a zone of residual tensile stress locally in the vicinity of the notch-tip upon unloading from the maximum far-field compressive stress. The residual tensile field is generated by permanent damage arising from crazing and/or shear deformation ahead of the notch-tip. Evidence for the inducement of residual tensile stresses on the crack plane is provided with the aid of micrographs of near-tip region where crazes are observed along the plane of the crack, i.e. normal to the compression loading axis. Compression fatigue crack growth in polystyrene is also highly discontinuous in the sense that the crack remains dormant during thousands of fatigue cycles following which there is a burst of crack extension, possibly in association with fracture within the craze. This intermittent growth process in cyclic compression is analogous to the formation of discontinuous growth bands during the tension fatigue of many crazeable polymers. The exhaustion of the near-tip residual tensile field and the increase in the level of crack closure with increasing crack length cause the fatigue crack to arrest. The universal features of this phenomenon are discussed in the context of ductile and brittle, non-crystalline and crystalline, as well as monolithic and composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号