共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Khurshid Z. Barsoum I. Barsoum T. Däuwel 《Fatigue & Fracture of Engineering Materials & Structures》2016,39(10):1281-1298
In this study, the fatigue strength of inclined butt welds subjected to a proportional multiaxial stress state generated by uniaxial loading is studied in nominal and local stress concepts. The local methodologies studied included principal stress hypothesis, von Mises stress hypothesis and modified Wöhler curve method. Nominal methodologies included modified Gough–Pollard interaction equation, the design equation in Eurocode3 and the interaction equation in DNV standard. Results are evaluated along with data published in relevant literature. It is observed that both local and nominal stress assessment methods are able to estimate multiaxial fatigue strength. No obvious difference in fatigue strength is observed in the nominal stress concept, but the notch stress concept is able to capture a decrease in fatigue strength in shear‐dominated joints. It is concluded that modified Wöhler curve method is a suitable tool for the evaluation of fatigue strength in joints dominated by both normal and shear stresses. 相似文献
2.
PH. P. DARCIS H. KATSUMOTO M. C. PAYARES-ASPRINO S. LIU T. A. SIEWERT 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(2):125-136
Arc welding typically generates residual tensile stresses in welded joints, leading to deteriorated fatigue performance of these joints. Volume expansion of the weld metal at high temperatures followed by contraction during cooling induces a local tensile residual stress state. A new type of welding wire capable of inducing a local compressive residual stress state by means of controlled martensitic transformation at relatively low temperatures has been studied, and the effects of the transformation temperature and residual stresses on fatigue strength are discussed. In this study, several LTTW (Low Transformation‐Temperature Welding) wires have been developed and investigated to better characterize the effect of phase transformation on residual stress management in welded joints. Non‐load‐carrying cruciform fillet welded joints were prepared for measurement of residual stresses and fatigue testing. The measurement of the residual stresses of the three designed wires reveals a compressive residual stress near the weld toe. The fatigue properties of the new wires are enhanced compared to a commercially available wire. 相似文献
3.
D. Radaj H.-P. Lehrke & S. Greuling 《Fatigue & Fracture of Engineering Materials & Structures》2001,24(5):293-308
Notch stress formulae are derived for the application of a notch stress approach to the fatigue assessment of spot welds. A keyhole notch is assumed to describe the edge of the weld spot between the overlapping plates. The stress fields at the keyhole notch under 'singular' and 'non-singular' in-plane loading modes inclusive of the stress concentration factors K t are derived from the relevant Airy stress functions. The formulae are applied to typical loading cases of spot welds and compared with finite element solutions. Fatigue-effective notch stresses inclusive of fatigue notch factors K f are calculated by applying the microstructural support hypothesis of Neuber. The notch stresses at the keyhole are also derived for out-of-plane shear loading based on the relevant harmonic stress functions. The multiaxial notch stresses at the weld spot edge are thus completely described. 相似文献
4.
J. W. Han D. K. Han S. H. Han 《Fatigue & Fracture of Engineering Materials & Structures》2014,37(2):146-156
In welded components, particularly those with complex geometrical shapes, evaluating stress intensity factors is a difficult task. To effectively calculate the stress intensity factors, a weld toe magnification factor is introduced that can be derived from data obtained in a parametric study performed by finite element method (FEM). Although solutions for the weld toe magnification factor have been presented, these are applicable only to non‐load‐carrying cruciform or T‐butt joints, due possibly to the requirement of very complicated calculations. In the majority of cases for various welded joints, the currently used weld toe magnification factors do not adequately describe the behaviour of weld toe cracks. In this study, the weld toe magnification factor solutions for the three types of welded joints such as cruciform, cover plate and longitudinal stiffener joints were provided through a parametric study using three‐dimensional finite elements. The solutions were formed with exponents and fractions that have polynomial functions in terms of a/c and a/t – that is, crack depths normalised by corresponding half crack lengths and specimen thickness. The proposed weld toe magnification factors were applied to evaluate the fatigue crack propagation life considering the propagation mechanisms of multiple‐surface cracks for all welded joints. It showed good agreement within a deviation factor of two between the experimental and calculated results for the fatigue crack propagation life. 相似文献
5.
A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry 总被引:1,自引:0,他引:1
P. LAZZARIN T. LASSEN P. LIVIERI 《Fatigue & Fracture of Engineering Materials & Structures》2003,26(1):49-58
In the Notch Stress Intensity Factor (N‐SIF) approach the weld toe region is modelled as a sharp V‐shaped corner and local stress distributions in planar problems can be expressed in closed form on the basis of the relevant mode I and mode II N‐SIFs. Initially thought of as parameters suitable for quantifying only the crack initiation life, N‐SIFs were shown able to predict also the total fatigue life, at least when a large part of the life is spent as in the propagation of small cracks in the highly stressed region close to the notch tip. While the assumption of a welded toe radius equal to zero seems to be reasonable in many cases of practical interest, it is well known that some welding procedures are able to assure the presence of a mean value of the weld toe radius substantially different from zero. Under such conditions any N‐SIF‐based prediction is expected to underestimate the fatigue life. In order to investigate the degree of conservatism, a total of 128 fillet welded specimens are re‐analysed in the present work by using an energy‐based N‐SIF approach. The local weld toe geometry, characterised by its angle and radius, has been measured with accuracy for the actual test series. The aim of the work is to determine if the N‐SIF‐based model is capable of taking into account the large variability of the toe angle, and to quantify the inaccuracy in the predictions due to the simplification of setting the toe radius equal to zero. 相似文献
6.
H. BADARINARAYAN Q. YANG K. OKAMOTO 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(11):908-920
Stitch friction stir spot welding (FSSW) is performed on 6022‐T4 Al alloy using a concave shoulder tool with cylindrical pin. Stitch FSSW is an extension of the conventional spot FSW process where an elongated (oval) spot is produced instead of a circular spot. The main advantage of this process is that it gives appreciably higher strength than conventional spot FSW due to an increase in the joint area. In this research, an experimental and numerical approach is taken to understand the failure mechanism of stitch welds made in lap‐shear configuration. There are four ways (orientations) in which specimens can be welded to produce a lap‐shear specimen – two in transverse direction and two in longitudinal direction. The static strength of welds made with these orientations was found to be different. For stitch welds made in the longitudinal orientation, the failure always occurred near the keyhole at the tool retract position. For welds made in the transverse orientation, failure always occurred in the region of the highest stress. This difference in the weld strength can be attributed to the hook geometry and interface bond strength. The results are explained using a kinked cracked model approach and calculation of stress intensity factor at the hook geometry. 相似文献
7.
A new proposal for assessment of the fatigue strength of steel butt‐welded joints improved by peening (HFMI) under constant amplitude tensile loading 下载免费PDF全文
Experimental fatigue data for butt‐welded joints in as‐welded condition and under constant amplitude tensile loading were analysed using the effective notch stress system and a new master curve analysis that takes the local stress ratio, Rlocal, into account. The local stresses needed for computation of Rlocal are calculated with the notch strain approach in conjunction with the reference radius concept. The main focus was to predict with the derived master curve the fatigue strength of peened butt‐welded joints. The lowest surface residual stresses after peening were first estimated based on reported measurements and an analytical lower bound result. The predictions showed quite similar strength dependences and FAT values as reported for high‐frequency mechanical impact treated welds for applied stress ratio R = 0.1. The benefits of peening reduce faster for higher strength steels when R increases. When R = 0.5, the FATs are practically the same for all steel grades. 相似文献
8.
The stress intensity factor concept for describing the stress field at pointed crack or slit tips is well known from fracture mechanics. It has been substantially extended since Williams' basic contribution (1952) on stress fields at angular corners. One extension refers to pointed V‐notches with stress intensities depending on the notch opening angle. The loading‐mode‐related simple notch stress intensity factors K1, K2 and K3 are introduced. Another extension refers to rounded notches with crack shape or V‐notch shape in two variants: parabolic, elliptic or hyperbolic notches (‘blunt notches’) on the one hand and root hole notches (‘keyholes’ when considering crack shapes) on the other hand. Here, the loading‐mode‐related generalised notch stress intensity factors K1ρ, K2ρ and K3ρ are defined. The concepts of elastic stress intensity factor, notch stress intensity factor and generalised notch stress intensity factor are extended into the range of elastic–plastic (work‐hardening) or perfectly plastic notch tip or notch root behaviour. Here, the plastic notch stress intensity factors K1p, K2p and K3p are of relevance. The elastic notch stress intensity factors are used to describe the fatigue strength of fillet‐welded attachment joints. The fracture toughness of brittle materials may also be evaluated on this basis. The plastic notch stress intensity factors characterise the stress and strain field at pointed V‐notch tips. A new version of the Neuber rule accounting for the influence of the notch opening angle is presented. 相似文献
9.
The authors analysed influence of a component of the torsional moment Mas under the complex loading state, that is under bending with torsion, on fatigue life during initiation and propagation of fatigue cracks. Simulation of specimen life was performed according to the relationships describing the crack propagation rate and including the equivalent stress intensity factor range Keq. Under complex loading, increase of amplitude of the torsional moment Mas for a given initial value of the resultant moment Maw0 caused a higher fatigue life of specimens made of 10HNAP and 18G2A steels. This fatigue life increase was described by a nonlinear equation, the parameters of which had been determined from the experimental results. The fatigue lives estimated according to the assumed models were compared with those obtained from tests. 相似文献
10.
M. P. NASCIMENTO H. J. C. VOORWALD J. DA C. PAYÃO FILHO 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(3):191-204
Welded joints of airframes critical to the flight‐safety are commonly repair welded during its operational live. In this study, the effect of up to three weld repairs by gas tungsten arc welding (GTAW) on the axial fatigue strength of AISI4130 steel used in an airframe critical to the flight‐safety was investigated. The tests were performed on hot‐rolled steel plate specimens, 0.89 mm thick, with load ratio R= 0.1, constant amplitude, at 20 Hz frequency and room temperature. The results obtained indicated that the axial fatigue strength decreased with the GTAW process itself, and with the subsequent repair cycles, as a consequence of microstructural and microhardness changes and of weld profile geometry factors, which induced high stress concentration at the weld toe. 相似文献
11.
Cumulative fatigue damage evaluations on spot‐welded joints using 590 MPa‐class automobile steel 下载免费PDF全文
R. Tanegashima I. Ohara H. Akebono M. Kato A. Sugeta 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(7):870-879
This study focused on local strain behaviour near the slit edge of spot‐welded joints, where the fatigue crack initiated, and investigated methods of evaluating cumulative fatigue damage. A method of evaluating local strain amplitude by following modified Goodman's law gave almost the same result as an evaluation approach based on the external force and provided reasonable result on general strength design. An approach based on Smith–Watson–Topper's equation was easy to evaluate cumulative fatigue damage compared with the method based on modified Goodman's law and gave a good agreement with a criterion of the modified Miner's rule. 相似文献
12.
Slobodanka Boljanovi Andrea Carpinteri 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(5):1010-1021
In the present paper, computational framework for fatigue performance analysis of a semicircular edge notch with a through‐the‐thickness crack or a semielliptical crack is discussed. The failure behaviour of such configurations is theoretically examined through the stress‐intensity analysis and residual life estimation. The stress field of a damaged notch configuration is herein investigated by employing analytical and numerical approaches. Further, a fracture mechanics–based methodology, developed for fatigue life assessment, is taking into account the crack growth model proposed by Huang and Moan in which the stress ratio is involved. The efficiency of the obtained fatigue damage assessments, related to the edge notch configurations, is verified through appropriate experimental observations. 相似文献
13.
Mirzaul Karim Hussain K.S.R.K. Murthy 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(5):1130-1147
In this paper, a simple, robust, and an efficient technique has been proposed for accurate estimation of mixed mode (I/II) notch stress intensity factors (NSIFs) of sharp V‐notched configurations using finite element notch opening and sliding displacements at the selected number of nodes along the notch flanks. Unlike the crack problems, displacement field is rarely employed in the notch problems due to complexities introduced by the presence of rigid body displacements. One of the main emphasis of the present work is to neatly bypass these rigid body displacements and develop a simple approach for accurate computation of the NSIFs so that it can be easily incorporated in the existing code. Several benchmark problems have been analyzed. The results obtained using the present method show excellent agreement with the solutions available in the literature. Some new results have also been reported in the present work. 相似文献
14.
针对现有模型对TC4竞争失效预测的不准确性,建立了基于最大应力强度因子的竞争失效模型。在室温以及两种应力比下,针对TC4钛合金进行超高周疲劳试验,通过试验与最弱键竞争失效理论相结合的方法进行评估,研究其超高周疲劳性能。通过对试样断口形貌的观察,可将其失效模式分为如下两类:表面失效以及内部失效。对试样表面缺陷以及内部解理刻面尺寸进行测量,并评估其最大应力强度因子值。进一步通过正态分布得到最大应力强度因子的累计分布函数,基于两参数泊松分布建立了与最大应力强度因子有关的竞争失效模型。通过模型计算结果,可以得出在任一最大应力强度因子下试样发生各种失效模式的概率,且经分析对比,本文中TC4两种疲劳失效模式的失效概率评估结果与试验数据吻合较好,为分析TC4钛合金超高周疲劳状态下的疲劳失效模式提出了新的评估方法。 相似文献
15.
F. BERTO P. LAZZARIN J. R. YATES 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(11):921-943
The paper deals with the multi‐axial fatigue strength of notched specimens made of 39NiCrMo3 hardened and tempered steel. Circumferentially V‐notched specimens were subjected to combined tension and torsion loading, both in‐phase and out‐of‐phase, under two nominal load ratios, R=?1 and R= 0, also taking into account the influence of the biaxiality ratio, λ=τa/σa. The notch geometry of all axi‐symmetric specimens was a notch tip radius of 0.1 mm, a notch depth of 4 mm, an included V‐notch angle of 90° and a net section diameter of 12 mm. The results from multi‐axial tests are discussed together with those obtained under pure tension and pure torsion loading on plain and notched specimens. Furthermore the fracture surfaces are examined and the size of non‐propagating cracks measured from some run‐out specimens at 5 million cycles. Finally, all results are presented in terms of the local strain energy density averaged in a given control volume close to the V‐notch tip. The control volume is found to be dependent on the loading mode. 相似文献
16.
S. PASTA A. P. REYNOLDS 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(7):569-580
Recent studies have illustrated a predominant role of the residual stress on the fatigue crack growth in friction stir welded joints. In this study, the role of the residual stress on the propagation of fatigue cracks orthogonal to the weld direction in a friction stir welded Ti‐6Al‐4V joint was investigated. A numerical prediction of the fatigue crack growth rate in the presence of the residual stresses was carried out using AFGROW software; reasonable correspondence between the predictions and the experimental results were observed when the effects of residual stress were included in the simulation. 相似文献
17.
Fatigue failure transition analysis in load‐carrying cruciform welded joints based on strain energy density approach 下载免费PDF全文
W. Song X. Liu F. Berto P. Wang H. Fang 《Fatigue & Fracture of Engineering Materials & Structures》2017,40(7):1164-1177
This paper details a study of the application of notch stress intensity theory to the fatigue failure mode analysis of the transition in load‐carrying cruciform welded joints. The weldment fatigue crack initiation point is difficult to predict precisely because it usually occurs in the vicinity of the weld toe or weld root. To investigate the relationship between fatigue failure location and the geometry of the weldments, we analysed the weld toe and root asymptotic notch stress fields were analysed using the notch stress intensity factors on the basis of the Williams' solution in Linear Elastic Fracture Mechanics (LEFM). Numerous configurations of cruciform joints of various plate thicknesses, transverse plate thickness, weld sizes and incomplete penetration size were used to investigate the location of the fatigue failure. The strain energy density (SED) surrounding the notch tip was introduced to unify the scalar quantity and preclude the inconsistency of the dimensionality of the notch stress intensity factors for various notch opening angles. The results of the investigation showed that the SED approach can be used to determine the transition zone for a variety of joint geometries. The validity of the SED criteria was verified by comparing the experimental results of this study with the complied results for load‐carrying cruciform welded joints reported in literature. 相似文献
18.
Experimental and analytical investigation of fatigue crack propagation of T‐welded joints considering the effect of boundary condition 下载免费PDF全文
D Sun J Gan Z Wang P Luo W Wu 《Fatigue & Fracture of Engineering Materials & Structures》2017,40(6):894-908
T‐welded joints are commonly employed in ship and ocean structures. The fatigue failure of structure components subjected to cyclic loading always occurs in T‐welded joints because of the metallurgical differences, tensile residual stress fields and stress concentrations. The former researches about T‐welded joints fatigue have in common that the boundary condition needs to be taken into account as an influencing parameter to predict the crack propagation during cyclic loading. In this paper, the crack growth behaviour in T‐welded joint processed with Q345D steel (Pingxiang Iron & Steel Co., Ltd, Hukou, Jiangxi Province in China) under the fatigue loading was analysed via analytical model and verified via experiment. The results show that the influence of boundary condition should be considered in T‐welded joint structure during crack propagation in weld toe area. The correction factor concerning the effect of boundary condition and modified Paris' equation was proposed according to the experimental results and verified by the following repeated experiments. 相似文献
19.
J. Wiebesiek M. Zemke C. M. Sonsino H. Kaufmann 《Materialwissenschaft und Werkstofftechnik》2011,42(10):855-865
This paper presents the results and evaluation of the multiaxial fatigue behaviour of laserbeam‐welded overlapped tubular joints made from the artificially hardened aluminium alloy AlSi1MgMn T6 (EN AW 6082 T6) under multiaxial loadings with constant and variable amplitudes. Several fatigue test series under pure axial and pure torsional loadings as well as combined axial and torsional proportional and non‐proportional loadings have been carried out in the range of 2·104 to 2·107 cycles. The assessment of the investigated thin‐walled joints is based on a local notch stress concept. In this concept the fatigue critical area of the weld root is substituted by a fictitious notch radius rref = 0.05 mm. The equivalent stresses in the notch, considering especially the fatigue life reducing influence of non‐proportional loading in comparison to proportional loading, were calculated by a recently developed hypothesis, which is called the Stress Space Curve Hypothesis (SSCH). This hypothesis is based on the time evolution of the stress state during one load cycle. In addition, the fatigue strength evaluation of multiaxial spectrum loading was carried out using a modified Gough‐Pollard algorithm. 相似文献
20.
D.J. Bang A. Ince L.Q. Tang 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(1):45-60
In this paper, a modification of the UniGrow model is proposed to predict total fatigue life with the presence of a short fatigue crack by incorporating short crack propagation into the UniGrow crack growth model. The UniGrow model is modified by 2 different methods, namely the “short crack stress intensity correction method” and the “short crack data‐fitting method” to estimate the total fatigue life including both short and long fatigue crack propagations. Predicted fatigue lives obtained from these 2 methods were compared with experimental data sets of 2024‐T3, 7075‐T56 aluminium alloys, and Ti‐6Al‐4V titanium alloy. Two proposed methods have shown good fatigue life predictions at relatively high maximum stresses; however, they provide conservative fatigue life predictions at lower stresses corresponding high cycle fatigue lives where short crack behaviour dominates total fatigue life at lower stress levels. 相似文献