首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, comprehensive investigation of both theoretical analysis and numerical simulation was carried out to investigate the plastic mismatch effect on plasticity induced crack closure (PICC) behavior and effective fatigue crack tip driving force. During the process of crack tip approaching interface, crack tip load and crack tip load ratio will change, resulting in the change of PICC degree. When the crack propagates towards higher strength side, Kop/Kmax increases; when the crack propagates towards lower strength side, Kop/Kmax decreases firstly and then increases. The two mechanisms of “interface plastic mismatch effect on nominal fatigue crack tip driving force” and “interface plastic mismatch effect on PICC degree” were compared. The second mechanism must be considered when building crack tip driving force model for describing fatigue crack crossing plastically mismatched interface, because it is more physically factual and maybe more important than the first mechanism.  相似文献   

2.
This study reports an experimental investigation of fatigue crack propagation in AlMgSi1-T6 aluminium alloy using both constant and variable load amplitudes. Crack closure was monitored in all tests by the compliance technique using a pin microgauge. For the constant amplitude tests four different stress ratios were analysed. The crack closure parameter U was calculated and related with Δ K and the stress ratio, R . The threshold of the stress intensity factor range, Δ K th , was also obtained. Fatigue crack propagation tests with single tensile peak overloads have been performed at constant load amplitude conditions. The observed transient post overload behaviour is discussed in terms of the overload ratio, Δ K baseline level and R . The crack closure parameter U trends are compared with the crack growth transients. Experimental support is given for the hypothesis that crack closure is the main factor determining the transient crack growth behaviour following overloads on AlMgSi1-T6 alloy for plane stress conditions.  相似文献   

3.
Interfacial fatigue crack growth in foam core sandwich structures   总被引:1,自引:0,他引:1  
This paper deals with the experimental measurement of face/core interfacial fatigue crack growth rates in foam core sandwich beams. The so-called ‘cracked sandwich beam’ specimen is used, slightly modified, which is a sandwich beam that has a simulated face/core interface crack. The specimen is precracked so that a more realistic crack front is created prior to fatigue growth measurements. The crack is then propagated along the interface, in the core material, during fatigue loading, as is assumed to occur in a real sandwich structure. The crack growth is stable even under constant amplitude testing. Stress intensity factors are obtained from the FEM which, combined with the experimental data, result in standard da/dN versus ΔK curves for which classical Paris’ law constants can be extracted. The experiments to determine stress intensity factor threshold values are performed using a manual load-shedding technique.  相似文献   

4.
An investigation of fatigue crack growth of interfacial cracks in bi-layered materials using the extended finite element method is presented. The bi-material consists of two layers of dissimilar materials. The bottom layer is made of aluminium alloy while the upper one is made of functionally graded material (FGM). The FGM layer consists of 100 % aluminium alloy on the left side and 100 % ceramic (alumina) on the right side. The gradation in material property of the FGM layer is assumed to be exponential from the alloy side to the ceramic side. The domain based interaction integral approach is extended to obtain the stress intensity factors for an interfacial crack under thermo-mechanical load. The edge and centre cracks are taken at the interface of bi-layered material. The fatigue life of the interface crack plate is obtained using the Paris law of fatigue crack growth under cyclic mode-I, mixed-mode and thermal loads. This study reveals that the crack propagates into the FGM layer under all types of loads.  相似文献   

5.
为研究制动盘服役温度载荷及材料微结构对SiC_(p)/A356复合材料热疲劳裂纹扩展行为的影响,明确其热疲劳裂纹扩展微观机理,开展SiC_(p)/A356复合材料热疲劳裂纹扩展实验。结果表明:裂纹扩展过程包括由SiC颗粒偏转作用和二次裂纹释放扩展驱动力导致的缓慢扩展阶段和主裂纹与裂纹扩展前端微损伤连接的快速扩展阶段;加热温度较低时,裂纹扩展的“台阶状”特征明显,整体扩展速率较低,裂纹宽度较小,裂纹扩展方式为颗粒断裂、轻量基体撕裂和沿界面开裂;加热温度较高时,“斜直线跃升”阶段更为明显,裂纹宽度较大且扩展速率较高,裂纹扩展以颗粒脱落以及大幅度基体撕裂为主;主裂纹总是通过选择沿SiC颗粒群或者直接穿过α-Al基体以阻力较小的方式向前扩展,Si相承载时极易发生断裂,成为裂纹扩展源,同时裂纹扩展前端的微损伤对其扩展具有引导作用。  相似文献   

6.
A simple and efficient method is presented in this paper for predicting fatigue crack growth rate in welded butt joints. Three well-known empirical crack growth laws are employed using the material constants that were obtained from the base material coupon tests. Based on the superposition rule of the linear elastic fracture mechanics, welding residual stress effect is accounted for by replacing the nominal stress ratio (R) in the empirical laws by the effective stress intensity factor ratio (Reff). The key part of the analysis process is to calculate the stress intensity factor due to the initial residual stress field and also the stress relaxation and redistribution due to crack growth. The finite element method in conjunction with the modified virtual crack closure technique was used for this analysis. Fatigue crack growth rates were then calculated by the empirical laws and comparisons were made among these predictions as well as against published experimental tests, which were conducted under either constant amplitude load or constant stress intensity factor range. Test samples were M(T) geometry made of aluminium alloy 2024-T351 with a longitudinal weld by the variable polarity plasma arc welding process. Good agreement was achieved.  相似文献   

7.
The crack growth behaviour of hybrid boron/glass/aluminium fibre metal laminates (FMLs) under constant‐amplitude fatigue loading was investigated. The hybrid FMLs consist of Al 2024‐T3 alloy as the metal layers and a mixture of boron fibres and glass fibres as the fibre layers. Two types of boron/glass/aluminium laminates were fabricated and tested. In the first type, the glass fibre/prepreg and the boron fibre/prepreg were used separately in the fibre layers, and in the second type, the boron fibres and the glass fibres were uniformly mingled together to form a hybrid boron fibre/glass fibre prepreg. An analytical model was also proposed to predict the fatigue crack growth behaviour of hybrid boron/glass/aluminium FMLs. The effective stress intensity factor at a crack tip was formulated as a function of the remote stress intensity factor, crack opening stress intensity factor, and the bridging stress intensity factor. The bridging stress acting on the delamination boundary along the crack length was also calculated based on the crack opening relations. Then, the empirical Paris‐type fatigue crack growth law was used for predicting the crack growth rates. A good correlation between the predicted and experimental crack growth rates has been obtained.  相似文献   

8.
采用四点弯曲加载方式进行奥氏体不锈钢/低碳锅炉钢双金属层合板垂直界面裂纹的疲劳扩展实验,研究了组元强度配合、爆炸焊接影响的区域性能(晶粒大小、形变强化、界面脱粘、独立塑性区等)对裂纹扩展行为的影响,以及垂直界面裂纹疲劳扩展的不同过程及其所对应的扩展机制.结果表明:由于强度错配,裂纹起始于高强度材料一倜时其疲劳扩展速率提高,而起始于低强度材料一倜时其疲劳扩展速率降低;当裂纹尖端接近界面时,界面区域的存在对上述两种情况下疲劳裂纹的扩展均起到了一定的屏蔽减速作用.  相似文献   

9.
Fatigue crack propagation tests have been carried out under various load conditions. Hysteresis loops denoting the relationship between load and strain at the crack tip are obtained by using local compliance measurement. Crack growth acceleration, delayed retardation and non‐propagation phenomena are investigated by considering the variation of hysteresis loop expansion and hysteresis loop tail. Based on the physical meaning of hysteresis loops, two types of crack closure are ascertained and the effect of crack closure on fatigue crack propagation is studied. Results show that change of the effective amplitude of the stress intensity factor at the crack tip is the reason that crack propagation rates vary.  相似文献   

10.
11.
Previous papers have shown ΔKRP to be a useful parameter describing fatigue crack propagation behavior, where ΔKRP is an effective stress intensity factor range corresponding to the excess RPG load (re-tensile plastic zone's generated load) in which the retensile plastic zone appears under the loading process. In this paper, the relationship between ΔKRP and the zone size ( ) (which is smaller between the tensile plastic zone at maximum load and the compressive plastic zone at minimum load) was investigated using a crack opening/closing simulation model so as to consider a physical meaning of ΔKRP. As a result, it becomes clear that ΔKRP dominates the zone size where fatigue damage mostly occurs. This result supports the following crack propagation equation
where C and m are material constants.Simulation and fatigue crack propagation tests were then carried out for compact tension (CT), center cracked tension (CCT) and four points bend (4PB) specimens under constant amplitude loading to obtain C and m values for HT-50 steel. Fatigue crack propagation tests were also carried out under constant amplitude loading using CCT specimens with residual stress distribution due to flame gas heating at the center line or edge lines. The T specimen introduced tensile residual stress at the tip of a notch, and the C specimen introduced compressive residual stress. It therefore becomes clear that tensile residual stress leads to a decrease in RPG load, while compressive residual stress leads to increase in RPG load, and that the simulation results are in good agreement with the experimental RPG load. It also becomes clear that simulated crack growth curve using the simulated and the above equation is in good agreement with the experimental curve. It is understood that tensile residual stress creates only a slight increase in crack propagation rate and compressive residual stress create a big decrease a crack propagation rate.  相似文献   

12.
The evolution of the stress–strain fields near a stationary crack tip under cyclic loading at selected R‐ratios has been studied in a detailed elastic–plastic finite element analysis. The material behaviour was described by a full constitutive model of cyclic plasticity with both kinematic and isotropic hardening variables. Whilst the stress/strain range remains mostly constant during the cyclic loading and scales with the external load range, progressive accumulation of tensile strain occurs, particularly at high R‐ratios. These results may be of significance for the characterization of crack growth, particularly near the fatigue threshold. Elastic–plastic finite element simulations of advancing fatigue cracks were carried out under plane‐stress, plane‐strain and generalized plane‐strain conditions in a compact tension specimen. Physical contact of the crack flanks was observed in plane stress but not in the plane‐strain and generalized plane‐strain conditions. The lack of crack closure in plane strain was found to be independent of the material studied. Significant crack closure was observed under plane‐stress conditions, where a displacement method was used to obtain the actual stress intensity variation during a loading cycle in the presence of crack closure. The results reveal no direct correlation between the attenuation in the stress intensity factor range estimated by the conventional compliance method and that determined by the displacement method. This finding seems to cast some doubts on the validity of the current practice in crack‐closure measurement, and indeed on the role of plasticity‐induced crack closure in the reduction of the applied stress intensity factor range.  相似文献   

13.
The building of Inconel 625 material was carried out using the selective laser melting method, and its fatigue crack growth property at ambient temperature was experimentally investigated. Compact‐tension specimens with different building orientations were utilized to determine the stress intensity factor threshold and fatigue crack growth rate curves at different stress ratios (R). The results indicated that the fatigue crack growth properties in the near threshold stress intensity factor and Paris regions were greatly affected by the loading factor, as well as the orientation of the alloy. The mechanism of fatigue crack growth at different stages was observed and discussed using scanning electron microscopy. Finally, based on the framework of the linear elastic fracture, a new and applicable effective driving force factor range was introduced to replace the traditional stress intensity factor range (ΔK) with good accuracy for all of the fatigue crack growth test data, considering both the stress ratio and orientation.  相似文献   

14.
Crack growth rate versus crack length curves of heavily overloaded parent material specimens and fatigue crack propagation curves of friction‐stir‐welded aluminium samples are presented. It is shown that in both cases the residual stresses have a strong effect on the crack propagation behaviour under constant and variable amplitude loading. As a simplified engineering approach, it is assumed in this paper, that in both cases residual stresses are the main and only factor influencing crack growth. Therefore fatigue crack propagation predictions are performed by adding the residual stresses to the applied loading and by neglecting the possible effects of overloading and friction stir welding on the parent material properties. For a quantitative assessment of the residual stress effects, the stress intensity factor due to residual stresses Kres is determined directly with the so‐called cut‐compliance method (incremental slitting). These measurements are particularly suited as input parameters for the software packages AFGROW and NASGRO 3.0, which are widely used for fatigue crack growth predictions under constant and variable amplitude loading. The prediction made in terms of crack propagation rates versus crack length and crack length versus cycles generally shows a good agreement with the measured values.  相似文献   

15.
A cumulative model of fatigue crack growth   总被引:1,自引:0,他引:1  
A model of fatigue crack growth based on an analysis of elastic/plastic stress and strain at the crack tip is presented. It is shown that the fatigue crack growth rate can be calculated by means of the local stress/strain at the crack tip. The local stress and strain calculations are based on the general solutions given by Hutchinson, Rice and Rosengren. It is assumed that a small highly strained area existing at the crack tip is responsible for the fatigue crack growth. It is also assumed that the fatigue crack growth rate depends mainly on the width, x1, of the highly strained zone and on the strain range, Δ?1, within the zone. A relationship between stress intensity factor K and the local strain and stress has been developed. It is possible to calculate the local strain for a variety of crack problems. Then, the number of cycles N1 required for material failure inside the highly strained zone is calculated. The fatigue crack growth rate is calculated as the ratio x1N1.The calculated fatigue crack growth rates were compared to the experimental ones. Two alloys steels and two aluminium alloys were analyzed. Good agreement between experimental and theoretical results is obtained.  相似文献   

16.
A generalised step-by-step procedure for fatigue crack growth analysis of structural components subjected to variable amplitude loading spectra has been presented. The method has been illustrated by analysing fatigue growth of planar corner crack in an attachment lug made of Al7050-T7451 alloy.Stress intensity factors required for the fatigue crack growth analysis were calculated using the weight function method. In addition, so-called “load-shedding” effect was accounted for in order to determine appropriate magnitudes of the applied stress intensity factors. The rate of the load shedding was determined with the help of the finite element (FE) method by finding the amount of the load transferred through the cracked ligament. The UniGrow fatigue crack growth model, based on the material stress–strain behaviour near the crack tip, has been used to simulate the fatigue crack growth under two variable amplitude loading spectra. The comparison between theoretical predictions and experimental data proved the ability of the UniGrow model to correctly predict fatigue crack growth behaviour of two-dimensional planar cracks under complex stress field and subjected to arbitrary variable amplitude loading.  相似文献   

17.
A rising load amplitude crack growth test on specimens pre-cracked in cyclic compression is presented as a procedure to determine the length dependence of the threshold of fatigue crack propagation described by the R(resistance)-curve for the threshold of stress intensity factor range. The experimental results show that the residual stress field in front of the pre-crack can significantly influence the R-curve.In order to measure the material specific R-curve which is not affected by the pre-cracking condition it is important to use the smallest possible load amplitude. To achieve this goal, a very small notch root radius is essential. It is shown that at notches machined by razor blade polishing technique the load amplitude for pre-cracking can be reduced to values where the load history does not influence the R-curve for the threshold of stress intensity range.  相似文献   

18.
A multiparameter approach is proposed for the characterization of fatigue crack growth in metallic materials. The model assesses the combined effects of identifiable multiple variables that can contribute to fatigue crack growth. Mathematical expressions are presented for the determination of fatigue crack growth rates, d a /d N , as functions of multiple variables, including stress intensity factor range, Δ K , stress ratio, R , crack closure stress intensity factor, K cl , the maximum stress intensity factor K max , nominal specimen thickness, t , frequency, Ω , and temperature, T . A generalized empirical methodology is proposed for the estimation of fatigue crack growth rates as a function of these variables. The validity of the methodology is then verified by making appropriate comparisons between predicted and measured fatigue crack growth data obtained from experiments on Ti–6Al–4V. The effects of stress ratio and specimen thickness on fatigue crack growth rates are then rationalized by crack closure considerations. The multiparameter model is also shown to provide a good fit to experimental data obtained for HY-80 steel, Inconel 718 polycrystal and Inconel 718 single crystal. Finally, the implications of the results are discussed for the prediction of fatigue crack growth and fatigue life.  相似文献   

19.
In metallic materials, growing cracks will remain closed or partially closed for a portion of the applied cyclic load as a consequence of plastically deformed material left in the wake of a growing crack, surface roughness along the crack surfaces, or corrosion debris. Proper characterization of this crack closure and the subsequent opening load is required for accurate prediction of crack growth. In the laboratory, global load–displacement data are commonly used in conjunction with a data reduction technique to estimate the opening load for a growing crack. Different data reduction techniques will be compared, and the influence of data smoothing will be demonstrated, using AA 7075-T651 specimens tested under constant amplitude cyclic loading with load ratios R = 0.1, 0.2, and 0.3. The ratio of maximum stress intensity factor to plane strain fracture toughness was approximately K max / K Ic = 0.5. The measured crack opening loads are also compared with predictions obtained from two different strip-yield models and three-dimensional elastic–plastic finite element analyses. Results show the necessity of using smoothed data, and the poor behaviour of the compliance offset data reduction technique, when analysing high load ratio data. A modification to this technique is proposed which improves crack opening load estimates. Overall, the analytical model predictions compare well with the experimental results; especially those results generated using the modified compliance offset technique.  相似文献   

20.
The influence of cross-sectional thickness on fatigue crack growth   总被引:6,自引:0,他引:6  
For thin structures, fatigue crack growth rates may vary with the structure's thickness for a given stress intensity factor range. This effect is mainly due to the change in the nature of the plastic deformation when the plastic zone size becomes comparable with, or greater than, the cross-sectional thickness. Variations in the constraint affect both the crack tip plastic blunting behaviour as well as the fatigue crack closure level. Approximate expressions are constructed for the constraint factor based on asymptotic values and numerical results, which are shown to correlate well with finite element results. It is demonstrated that the present results not only permit predictions of the specimen thickness effects on fatigue crack propagation under spectrum loading, but also eliminate the need to determine the constraint factor by curve-fitting crack growth data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号