首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micromechanical modelling of void nucleation in ductile metals indicates that strain required for damage initiation reduces exponentially with increasing stress triaxiality. This feature has been incorporated in a continuum damage mechanics (CDM) model, providing a phenomenological relationship for the damage threshold strain dependence on the stress triaxiality. The main consequences of this model modification are that the failure locus is predicted to change as function of stress triaxiality sensitivity of the material damage threshold strain and that high triaxial fracture strain is expected to be even lower than the threshold strain at which the damage processes initiate at triaxiality as low as 1/3. The proposed damage model formulation has been used to predict ductile fracture in unnotched and notched bars in tension for two commercially pure α‐iron grades (Swedish and ARMCO iron). Finally, the model has been validated, predicting spall fracture in a plate‐impact experiment and confirming the capability to capture the effect of the stress state on material fracture ductility at very high stress triaxiality.  相似文献   

2.
韧性材料断裂过程通常可看作是材料内部微孔洞的形核、扩展及相互贯通的积累。经典的Gurson- Tvergaard (GT)模型能够很好地模拟具有变形均匀、各向同性的孔洞的萌生及扩展过程;但无法模拟由孔洞贯通而引起的局部变形过程,因此需要对其修正,引入相应的孔洞贯通准则。该文采用两种贯通准则对经典GT模型进行修正,即Thomason的塑性极限载荷准则和临界等效塑性应变准则。借助用户自定义程序UMAT将采用这两种贯通准则修正的GT本构关系嵌入至商用有限元软件ABAQUS中,从而可通过对金属材料应力状态和断裂机理的分析控制孔洞的贯通。以一组含有不同缺口根半径的圆棒拉伸试验件为例,分析了该类金属构件自孔洞萌生至最终断裂的整个损伤演化过程,并与试验数据进行了对比,验证了该模型的有效性。该文还讨论了金属断裂过程中应力三轴度对微裂纹萌生与扩展的影响。  相似文献   

3.
A modified Gurson model and its application to punch-out experiments   总被引:2,自引:0,他引:2  
Recent experimental evidence has reiterated that ductile fracture is a strong function of stress triaxiality. Under high stress triaxiality loading, failure occurs as a result of void growth and subsequent necking of inter-void ligaments while under low stress triaxiality failure is driven by shear localization of plastic strain in these ligaments due to void rotation and distortion. The original Gurson model is unable to capture localization and fracture for low triaxiality, shear-dominated deformations unless void nucleation is invoked. A phenomenological modification to the Gurson model that incorporates damage accumulation under shearing has been proposed. Here we further extend the model and develop the corresponding numerical implementation method. Several benchmark tests are performed in order to verify the code. Finally, the model is utilized to model quasi-static punch-out experiments on DH36 steel. It is shown that the proposed modified Gurson model, in contrast to the original model, is able to capture the through-thickness development of cracks as well as the punch response. Thus, the computational fracture approaches based on the modified Gurson model may be applied to shear-dominated failures.  相似文献   

4.
The growth and coalescence of penny-shaped voids resulting from particle fracture is a common damage process for many metallic alloys. A three steps modeling strategy has been followed to investigate this specific failure process. Finite element cell calculations involving very flat voids shielded or not by a particle have been performed in order to enlighten the specific features of a damage mechanism starting with initially flat voids with respect to more rounded voids. An extended Gurson-type constitutive model supplemented by micromechanics-based criteria for both void nucleation and void coalescence is assessed for the limit of very flat voids towards the FE calculations. The constitutive model is then used to generate a parametric study of the effects of the stress state, the microstructure and the mechanical properties on the ductility. Based on these results, a simple closed-form model for the ductility is finally proposed. The main outcomes of this study are that (i) the ductility of metal alloys involving penny-shaped voids is primarily controlled by the relative void spacing; (ii) the definition of an effective porosity in terms of an equivalent population of spherical voids is valid for low particle volume fraction; (iii) the presence of a particle shielding the void does not significantly affect the void growth rates and void aspect evolution; (iv) early fracture by void coalescence can occur under very low stress triaxiality conditions if the particle volume fraction is large enough, explaining that some alloys and composites can fail through a transgranular ductile fracture mode under uniaxial tension condition before the onset of necking; (v) the fracture mechanism moves from void growth controlled to void nucleation controlled when increasing the void nucleation stress, lowering the stress triaxiality, and increasing the initial void aspect ratio.  相似文献   

5.
The paper addresses the determination of the traction-separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction-separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.  相似文献   

6.
The micromechanics of ductile fracture has made enormous progress in recent years. This approach, which was mostly developed in the context of structural integrity analysis, is becoming a key tool for materials scientists to optimize materials fracture properties and forming operations. Micromechanical models allow quantitatively linking fracture properties, microstructure features at multiple lengths scales, and manufacturing conditions. After briefly reviewing the state of the art, this paper illustrates the application of the micromechanics-based methodology by presenting the results of an investigation on the damage resistance of 6xxx Al produced by extrusion.The presence of coarse, elongated, particles is the key microstructural feature affecting the fracture behaviour of 6xxx Al. The detrimental elongated β-type particles are transformed into rounded α-type particles by heat treatment. In situ tensile tests revealed that, at ambient temperature, the α particles and the β particles oriented with the long axis perpendicular to the main loading direction undergo interface decohesion, while the β particles oriented perpendicular to the loading direction break into several fragments. At high temperatures, only interface decohesion is observed. Uniaxial tensile tests on notched and smooth round bars were performed on two different alloys, at different temperatures ranging between 20 °C and 600 °C, under different loading rates, while systematically varying the content in β versus α particles. The ductility increases with decreasing amount of β particles, increasing temperature and strain rates, and decreasing stress triaxiality.A viscoplastic extension of the Gurson model has been developed for capturing the complex hierarchy of damage mechanisms, coupled with viscoplastic and stress state effects. Three populations of voids are modelled while accounting for the different void nucleation mechanisms leading to different initial void aspect ratio. Proper modelling of the initial void aspect ratio and of its evolution with void growth was the key to predict the effect of the β → α conversion on ductility. The void coalescence criterion takes into account the presence of secondary voids resulting from particle fragmentation. The characteristics of particles entering the model were all measured experimentally. The temperature and rate dependent flow properties of the matrix material have been obtained by inverse modelling. The only fitting parameters are the critical stresses for void nucleation. The model is validated by comparing the predictions to the experimental data involving different relative proportion of α and β particles, temperature, loading rate and stress triaxiality. This type of model opens the path for an “alloy by design” strategy which relates end-use properties to upstream manufacturing operations.  相似文献   

7.
为研究高强钢板成形过程中的损伤破裂机理,更准确地预测高强钢的断裂失效行为,基于细观损伤力学的空穴理论,并在屈服函数就是塑性势函数的通用性假设基础上推导了各向同性的韧性断裂模型;同时引入Lode参数以反映不同应变状态下空穴形核、长大以及聚合的差异,提出了一种包含应力三轴度和Lode参数的新模型.在Hill正交各向异性屈服假设下,描述了平面应力状态下应力比值、r值与应力三轴度、等效塑性应变的关系.最后,针对DP590进行了参数确定和实验验证.结果表明:应力三轴度在高强钢韧性断裂中仍然起主导因素,在低应力三轴下,材料主要是剪切型破坏,空穴的长大及聚合方式主要受剪应力影响,高应力三轴下,空穴损伤主要受拉应力影响,断裂是韧窝形的;Lode参数决定了应力组成形式,也间接地反映了应变状态,它与应力三轴度共同决定了空穴损伤的发展.新的模型能较准确地预测DP590的成形极限.  相似文献   

8.
In automobile crashworthiness simulation, the prediction of plastic deformation and fracture of each significant, single component is critical to correctly represent the transient energy absorption through the car structure. There is currently a need, in the commercial FEM community, for validated material fracture models which adequately represent this phenomenon. The aim of this paper is to compare and to validate existing numerical approaches to predict failure with test data. All studies presented in this paper were carried out on aluminium wrought alloys: AlMgSi1.F31 and AlMgSiCu‐T6. A viscoplastic material law, whose parameters are derived from uniaxial tensile and compression tests at various strain rates, is developed and presented herein. Fundamental ductile fracture mechanisms such as void nucleation, void growth, and void coalescence as well as shear band fracture are present in the tested samples and taken into consideration in the development of the fracture model. Two approaches to the prediction of fracture initiation are compared. The first is based on failure curves expressed by instantaneous macroscopic stresses and strains (i. e. maximum equivalent plastic strain vs. stress triaxiality). The second approach is based on the modified Gurson model and uses state variables at the mesoscopic scale (i. e. critical void volume fraction). Notched tensile specimens with varying notch radii and axisymmetric shear specimens were used to produce ductile fractures and shear band fractures at different stress states. The critical macroscopic and mesoscopic damage values at the fracture initiation locations were evaluated using FEM simulations of the different specimens. The derived fracture criteria (macroscopic and mesoscopic) were applied to crashworthiness experiments with real components. The quality of the prediction on component level is discussed for both types of criteria.  相似文献   

9.
Life time and failure modes are predicted for metallic barssustaining tensile creep. Experimental results show that a ductile or a`brittle' mode of fracture occurs depending respectively on whether thenominal applied stress is large or small. The analysis is based on amodeling of void nucleation and growth in which damage evolution iscontrolled by two mechanisms of plastic flow in the matrix material.Fracture is supposed to occur when the porosity attains a critical valuewhich depends on the mode of fracture considered. Experimental resultsare explained and described in terms of the proposed model.  相似文献   

10.
11.
A near-tip plane strain finite element analysis of a crack terminating at and normal to the interface in a laminate consisting of alternate brittle and ductile layers is conducted under mode-I loading. The studies are carried out for a system representing steel/alumina composite laminate. The Gurson constitutive model, which accounts for the ductile failure mechanisms of microvoid nucleation, growth and coalescence, is employed within the framework of small deformation plasticity theory. Evolution of plastic zone and damage in the ductile layer is monitored with increasing load. High plastic strain localization and microvoid damage accumulation are found to occur along the brittle/ductile interface at the crack-tip. Fracture initiation in the ductile phase is predicted and the conditions for crack renucleation in the brittle layer ahead of the crack are established for the system under consideration. Ductile fracture initiation has been found to occur before plasticity spreads in multiple ductile layers. Effects of material mismatch and yield strength on the plastic zone evolution are briefly discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Damage initiation and progression in precipitate hardened alloys are typically linked to the failure of second phase particles that result from the precipitation process. These particles have been shown to be stress concentrators and crack starters as a result of both particle debonding and fracture. In this investigation, a precipitate hardened aluminium alloy (Al 2024‐T3) is loaded monotonically to investigate the role the particles have in the progressive failure process. The damage process was monitored continuously by combining the acoustic emission method either with in situ scanning electron microscopy or X‐ray microcomputed tomography to obtain both surface and volume microstructural information. Particles were observed to fracture only in the elastic regime of the material response, while void growth at locations predominantly near particles were found to be associated with progressive failure in the plastic region of the macroscopic response. Experimental findings were validated by fracture simulations at the scale of particle‐matrix interface.  相似文献   

13.
The cohesive model becomes popular in crack analysis for its clear physical background and flexible implementation. The cohesive traction–separation law, however, is a critical point and will generally be empirically assumed. In the present paper the cohesive traction–separation law is investigated based on constrained three-dimensional atomistic simulations. The computations under mode I conditions show that crack growth even in the nano-scale single-crystal aluminum is in the form of void nucleation, growth and coalescence, which is similar to ductile fracture at meso-scale. The concentrations of the atomic tensile stress and the atomic hydrostatic stress at a certain distance from the crack tip characterize void nucleation and final crack growth. The Mises stress does not play a role in the material failure in the nano-scale. This implies that ductile failure under mode I loading condition is dominated by the normal traction, which agrees with the assumption of the cohesive zone model. Variations of the atomic stresses near the crack tip provide the theoretical background for the cohesive zone model and can be used to identify the cohesive traction–separation law. The traction curve is very sensitive to the distance to the crack tip, which is related with the stress triaxiality. The atomistic simulations show tendentious agreement with the known cohesive traction–separation laws, whereas the scattering of the atomic stress versus separation implies effects of the hydrostatic stress in the traction–separation law. The computation provides important information for constructing the cohesive zone model.  相似文献   

14.
The stress state is one of the most notable factors that dominates the initiation of ductile fracture. To examine the effects of the stress state on plasticity and ductile failure, a new tension‐shear specimen that can cover a wide range of stress triaxialities was designed. A fracture locus was constructed in the space of ductility and stress triaxiality for two typical steels based on a series of tests. It is observed that the equivalent plastic strain at failure exhibits a nonmonotonic variation with increasing the value of stress triaxiality. A simple damage model based on the ductility exhaustion concept was used to simulate the failure behaviour, and a good agreement is achieved between simulation results and experimental data. It is further shown that consideration of fracture locus covering a wide range of stress triaxialities is a key to an accurate prediction.  相似文献   

15.
An elastic–plastic interface model at finite deformations is utilized to predict the irreversible deformation of metal matrix composites (MMCs) under the transverse loading and unloading conditions. The associated benefit of the cohesive model is to provide a physical insight on the main irreversible deformation mechanisms, i.e., the geometrically nonlinear, localized plastic deformation and damage induced debonding, at the interface of MMCs. The extensive parametric study is conducted using this cohesive model to investigate the effects of the cohesive parameters on the stress–strain response of MMCs under transverse loading. Further, the ductile mechanism of the matrix is considered to characterize the competition between the plastic flow of the matrix and the inelastic interface induced irreversible deformation. Moreover, the predictions using the cohesive model are compared with those available experimental data in the literature to demonstrate the inelastic behaviors, including the interfacial plasticity and damage induced debonding, as well as the plastic flow of the matrix. The numerical results of the stress–strain responses for both loading and unloading conditions show good agreements with those obtained by the experiment. The deformation and failure modes of MMCs predicted by the model are also consistent with the observations of the experiment.  相似文献   

16.
In this contribution, the effect associated with stress triaxiality on ductile damage evolution in high purity nickel has been investigated from both experimental and theoretical points of view. Tensile tests on smooth and notched round bar specimens were performed to calibrate the fracture strain in a wide range of stress triaxiality. The capability of the Gurson model to reproduce and predict physical failure behaviour was examined. It was shown that stress triaxiality played a major role on damage evolution as demonstrated by the progressive reduction of material ductility under increasing triaxial states of stress.  相似文献   

17.
Ductile failure of heterogeneous materials, such as cast aluminum alloys and discretely reinforced aluminums or DRA’s, initiates with cracking, fragmentation or interface separation of inclusions, that is followed by propagation in the matrix by a ductile mechanism of void nucleation and growth. Damage localizes in bands of intense plastic deformation between inclusions and coalesces into a macroscopic crack leading to overall failure. Ductile fracture is very sensitive to the local variations of the microstructure morphology. This is the first of a two part paper on the effect of microstructural morphology and properties on the ductile fracture in heterogeneous ductile materials. In this paper the locally enhanced Voronoi cell finite element method (LE-VCFEM) for rate-dependent porous elastic–viscoplastic materials is used to investigate the sensitivity of strain to failure to loading rates, microstructural morphology and material properties. A model is also proposed for strain to failure, incorporating the effects of important morphological parameters.  相似文献   

18.
Fracture mechanisms for widely used metal materials are investigated under various loading conditions. Several specimens and different loading methods are deliberately designed to produce various stress states. The stress triaxiality is used to rate the level of tension and compression under various stress states. The stress triaxiality increases with adding a notch in the specimen under tension loading and decreases by changing the loading from tension to compression. Scanning electron microscopes are used to observe the microscopic features on the fracture surfaces. The fracture surfaces observed in the tests indicate that with the decreasing stress triaxiality the fracture mechanism for a given metal material includes intergranular cleavage, nucleation, growth, void coalescence, and local shear band expansion. With the fracture mechanisms changing from intergranular cleavage to nucleation, growth, and coalescence of voids, and expansion of a local shear band, four possible fracture modes can be observed, which are quasi-cleavage brittle fracture, normal fracture with void, shear fracture with void, and shear fracture without void. Quasi-cleavage brittle fracture and normal fracture with void are both normal stress-dominated fracture modes; however, their mechanisms are different. Shear fracture with and without void are both shear stress-dominated fracture, and shear fracture with void is also influenced by the normal stress. To a certain metal material, under high stress triaxiality, quasi-cleavage brittle fracture and normal fracture with void tend to occur, and under low stress triaxiality, shear fracture with and without void tend to occur. In addition, the critical positions and fracture criteria adapted to each fracture mode will also be different.  相似文献   

19.
A criterion has been formulated for transcrystalline and intercrystalline fracture caused by the evolution of voids located both in a grain and on grain boundaries. The criterion is based on the idea of plastic collapse for a unit cell that is a regular structural mezovolume of polycrystalline material. The criterion does not require the introduction of any empirical parameters, such as critical void size, critical size of ligament between voids and critical void volume fraction, which are used in most models.
Modelling has been performed for void nucleation and growth in a grain and on grain boundaries for elastic–plastic deformation and under creep conditions. A scheme is proposed to describe the transition from transcrystalline to intercrystalline cavitation fracture as a function of strain rate and temperature.
The effect of stress triaxiality on the critical strain and the lifetime for both transcrystalline and intercrystalline fracture has been investigated. A comparison of the results predicted by the suggested criterion with available empirical data has been performed.  相似文献   

20.
For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict void nucleation and very limited void growth. Void coalescence would therefore be largely postponed. However, using the shear modification of the Gurson model, recently introduced by Nahshon and Hutchinson (2008) [1], failure prediction is possible at zero or even negative mean stress. Since, this shear modification has too large effect in some cases where the stress triaxiality is rather high, an extension is proposed in the present study to better represent the damage development at moderate to high stress triaxiality, which is known to be well described by the Gurson model. Failure prediction and tensile response curves for an interfacial shear failure or a ductile plug failure, are here compared when using either the original Gurson model, the shear modified model, or the extension to the shear modified model. The suggested extension makes it possible to use the shear modified model as a simple way of accounting for damage development under low triaxiality shearing, without further increasing the damage rate in regions of moderate to high stress triaxiality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号