首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper provides new insights in the use of the critical distance method for fatigue analysis of notched aluminium components subjected to constant amplitude bending loading. A straightforward test setup was developed to load test samples with different stress concentrations in repeated bending at high test frequency. The mean values of the local endurable stress amplitudes are determined with the staircase method and the Dixon and Mood theory using a minimum amount of test samples. The critical distance is determined using these fatigue limits and the corresponding stress gradients determined by means of finite element analysis. The results indicate a unique critical distance of 0.22 mm for fatigue crack initiation. Consequently, the critical distance theory can be successfully applied for fatigue analysis of notched specimens or engineering components of aluminium EN AW 7075 T7351 with geometrical features of various size and shape subjected to fluctuating loading in bending.  相似文献   

2.
In the present paper, a damage gradient model combing the damage concept with the theory of critical distance (TCD) is established to estimate the fatigue lives of notched metallic structures under multiaxial random vibrations. Firstly, a kind of notched metallic structure is designed, and the biaxial random vibration fatigue tests of the notched metallic structures are carried out under different correlation coefficients and phase differences between two vibration axes. Then, the fatigue lives of the notched metallic structures are evaluated utilizing the proposed model with the numerical simulations. Finally, the proposed model is validated by the experiment results of the biaxial random vibration fatigue tests. The comparison results demonstrate that the proposed model can provide fatigue life estimation with high accuracy.  相似文献   

3.
Two methods based on local stress responses are proposed to locate fatigue critical point of metallic notched components under non‐proportional loading. The points on the notch edge maintain a state of uniaxial stress even when the far‐field fatigue loading is multiaxial. The point bearing the maximum stress amplitude is recognized as fatigue critical point under the condition of non‐mean stress; otherwise, the Goodman's empirical formula is adopted to amend mean stress effect prior to the determination of fatigue critical point. Furthermore, the uniaxial stress state can be treated as a special multiaxial stress state. The Susmel's fatigue damage parameter is employed to evaluate the fatigue damage of these points on the notch edge. Multiaxial fatigue tests on thin‐walled round tube notched specimens made of GH4169 nickel‐base alloy and 2297 aluminium‐lithium alloy are carried out to verify the two methods. The prediction results show that both the stress amplitude method and the Susmel's parameter method can accurately locate the fatigue critical point of metallic notched components under multiaxial fatigue loading.  相似文献   

4.
This paper proposes an engineering method suitable for predicting the fatigue limit of both plain and notched components subjected to uniaxial as well as to multiaxial fatigue loadings. Initially, some well‐known concepts formalized by considering the cracking behaviour of metallic material under uniaxial cyclic loads have been extended to multiaxial fatigue situations. This theoretical extension allowed us to form the hypothesis that fatigue limits can be estimated by considering the linear–elastic stress state calculated at the centre of the structural volume. This volume was assumed to be the zone where all the main physical processes take place in fatigue limit conditions. The size of the structural volume was demonstrated to be constant, that is, independent from the applied loading type, but different for different materials. Predictions have been made by Susmel and Lazzarin's multiaxial fatigue criterion, applied using the linear–elastic stress state determined at the centre of the structural volume. The accuracy of this method has been checked by using a number of data sets taken from the literature and generated by testing notch specimens both under uniaxial and multiaxial fatigue loadings. Our approach is demonstrated to be a powerful engineering tool for predicting the fatigue limit of notch components, independently of material, stress concentration feature and applied load type. In particular, it allowed us to perform predictions within an error interval of about ±25% in stress, even though some material mechanical properties were either estimated or taken from different sources.  相似文献   

5.
This paper deals with the formulation and experimental validation of a novel fatigue lifetime estimation technique suitable for assessing the extent of damage in notched metallic materials subjected to in‐service proportional/nonproportional constant/variable amplitude multiaxial load histories. The methodology being formulated makes use of the Modified Manson‐Coffin Curve Method, the Shear Strain–Maximum Variance Method, and the elasto‐plastic Theory of Critical Distances, with the latter theory being applied in the form of the Point Method. The accuracy and reliability of our novel fatigue lifetime estimation technique were checked against a large number of experimental results we generated by testing, under proportional/nonproportional constant/variable amplitude axial‐torsional loading, V‐notched cylindrical specimens made of unalloyed medium‐carbon steel En8 (080M40). Specific experimental trials were run to investigate also the effect of non‐zero mean stresses as well as of different frequencies between the axial and torsional stress/strain components. This systematic validation exercise allowed us to demonstrate that our novel multiaxial fatigue assessment methodology is remarkably accurate, with the estimates falling within an error factor of 2. By modelling the cyclic elasto‐plastic behaviour of metals explicitly, the design methodology being formulated and validated in the present paper offers a complete solution to the problem of estimating multiaxial fatigue lifetime of notched metallic materials, with this holding true independently of sharpness of the stress/strain raiser and complexity of the load history.  相似文献   

6.
Research on fatigue crack formation from a corroded 7075‐T651 surface provides insight into the governing mechanical driving forces at microstructure‐scale lengths that are intermediate between safe life and damage tolerant feature sizes. Crack surface marker‐bands accurately quantify cycles (Ni) to form a 10–20 μm fatigue crack emanating from both an isolated pit perimeter and EXCO corroded surface. The Ni decreases with increasing‐applied stress. Fatigue crack formation involves a complex interaction of elastic stress concentration due to three‐dimensional pit macro‐topography coupled with local micro‐topographic plastic strain concentration, further enhanced by microstructure (particularly sub‐surface constituents). These driving force interactions lead to high variability in cycles to form a fatigue crack, but from an engineering perspective, a broadly corroded surface should contain an extreme group of features that are likely to drive the portion of life to form a crack to near 0. At low‐applied stresses, crack formation can constitute a significant portion of life, which is predicted by coupling macro‐pit and micro‐feature elastic–plastic stress/strain concentrations from finite element analysis with empirical low‐cycle fatigue life models. The presented experimental results provide a foundation to validate next‐generation crack formation models and prognosis methods.  相似文献   

7.
Analysis of welded structures still remains a challenge for the analyst and in fact cannot be considered as fully solved for practical applications. For many years, a large international aggregation of researchers has developed methods to assess fatigue behaviour of welded structures. Nowadays many suggestions and methods exist to estimate fatigue life of welded structures with respect to nominal, structural, notch stress or fracture mechanics approaches. All of them are still under improvement. The high motivation and many activities of experts in the International Institute of Welding (IIW) group of researchers is a good demonstration of the complexity and need for analysis methods in that field. The purpose of this paper is to provide some discussion on selected methods available. Both authors are giving lectures to transfer methods to industrial applications. It is their experience that a large amount of knowledge has been developed although proper applications require some grading and comments on the use of those methods. This paper should give some comments and recommendations for the practical application of a selection of methods already available. A hierarchical two‐step procedure for the assessment of large welded structures will be described and recommended. Also benchmark results are presented on a sample structure for sake of comparison of a few selected methods. Finally a presentation of results obtained by application of selected methods on real structures in comparison with fatigue lives from experiments will be presented. The methods selected within the paper cover the approaches for modelling, structural analysis and assessment of welded structures using finite element analysis (FEA) and stress based concepts for fatigue life estimation.  相似文献   

8.
In the present study, the stress gradient modified critical distance method is proposed to predict the low‐cycle fatigue lifetime of notched TA19 specimens by introducing a weight function of relative stress gradient into conventional critical distance theories. The accuracy and reliability of the proposed method were validated based on the experimental data by performing low‐cycle fatigue tests on smooth bar TA19 specimens as well as geometrically similar plate specimens containing a bore hole (BHP). Predicted results demonstrate that the mean absolute errors for entire tested specimens using the stress gradient modified critical distance method on the basis of the point method and the line method are 7.49% and 7.41% respectively. Furthermore, the fatigue striation width at the fracture surface was determined by scanning electronic microscope observations to examine the stress gradient effect on the crack growth rate.  相似文献   

9.
In this note, we explore the possibility of simple extensions of the heuristic El Haddad formula for finite life, as an approximate expression valid for crack‐like notches, and of the ‘Luká? and Klesnil’ equation for blunt notches. The key starting point is to assume, in analogy to the Basquin power‐law SN curve for the fatigue life of the uncracked (plain) specimen, a power law for the ‘finite life’intrinsic El Haddad crack size. The approach has similarities with what recently proposed by Susmel and Taylor as a Critical Distance Method for Medium‐Cycle Fatigue regime. Reasonable agreement is found with the fatigue data of Susmel and Taylor for notches, and in particular the error seems smaller in finite life than for infinite life, where these equations are already used. In these respects, the present proposal can be considered as a simple empirical unified approach for rapid assessment of the notch effect under finite life.  相似文献   

10.
A key limitation of the most constitutive models that reproduce a degradation of quasi‐brittle materials is that they generally do not address issues related to fatigue. One reason is the huge computational costs to resolve each load cycle on the structural level. The goal of this paper is the development of a temporal integration scheme, which significantly increases the computational efficiency of the finite element method in comparison to conventional temporal integrations. The essential constituent of the fatigue model is an implicit gradient‐enhanced formulation of the damage rate. The evolution of the field variables is computed as a multiscale Fourier series in time. On a microchronological scale attributed to single cycles, the initial boundary value problem is approximated by linear BVPs with respect to the Fourier coefficients. Using the adaptive cycle jump concept, the obtained damage rates are transferred to a coarser macrochronological scale associated with the duration of material deterioration. The performance of the developed method is hence improved due to an efficient numerical treatment of the microchronological problem in combination with the cycle jump technique on the macrochronological scale. Validation examples demonstrate the convergence of the obtained solutions to the reference simulations while significantly reducing the computational costs.  相似文献   

11.
In the present paper, the theory of critical distances (TCD) is reformulated in order to make it suitable for predicting fatigue lifetime of notched components in the medium-cycle fatigue regime. This extension of the TCD takes as its starting point the idea that the material characteristic length, L, changes as the number of cycles to failure, Nf, changes. In order to define the L versus Nf relationship two different strategies were investigated. Initially, we attempted to determine it by using the L values calculated considering material properties defined at the two extremes, namely static failure and the fatigue limit. This strategy, though correct from a philosophical point of view, contained some problems in its practical application. We subsequently attempted to determine the L versus Nf relationship by means of two calibration fatigue curves; (one generated by testing plain specimens and the second one generated by testing notched specimens). This second strategy was found to be much more simple to apply to practical problems, resulting in estimations characterized by a higher accuracy. The reliability of the devised method was systematically checked by using experimental results generated by testing notched specimens of low-carbon steel containing different geometrical features and tested using various loading types, stress ratios and specimen thicknesses. The accuracy of the method was further verified by using several data sets taken from the literature. Our method was seen to be successful giving predictions falling always within the scatter band of the data from the parent material. These results are very interesting, especially considering that the TCD is very easy to use because it requires only a linear-elastic stress analysis.  相似文献   

12.
In the present work, we propose a robust calibration of some bi‐parametric multiaxial fatigue criteria applied in conjunction with the theory of critical distances (TCD). This is based on least‐square fitting fatigue data generated using plain and sharp‐notched specimens tested at two different load ratios and allows for the estimation of the critical distance according to the point and line method formulation of TCD. It is shown that this combination permits to incorporate the mean stress effect into the fatigue strength calculation, which is not accounted for in the classical formulation of TCD based on the range of the maximum principal stress. It is also shown that for those materials exhibiting a low fatigue‐strength‐to‐yield‐stress ratio σfl,R = ?1YS, such as 7075‐T6 (σfl,R = ?1YS = 0.30), satisfactorily accurate predictions are obtained assuming a linear‐elastic stress distribution, even at the tip of sharp notches and cracks. Conversely, for any materials characterized by higher values of this ratio, as quenched and tempered 42CrMo4 (σfl,R = ?1YS = 0.54), it is recommended to consider the stabilized elastic‐plastic stress/strain distribution, also for plain and blunt‐notched samples and even in the high cycle fatigue regime still with the application of the TCD.  相似文献   

13.
Engineering plastics provide superior performance to ordinary plastics for wide range of the use. For polymer materials, dynamic stress and strain rate may be major factors to be considered when the strength is evaluated. Recently, high‐speed tensile test is being recognized as a standard testing method to confirm the strength under dynamic loads. In this study, therefore, high‐speed tensile test is analysed by the finite element method; then, the maximum dynamic stress and strain rate are discussed with varying the tensile speed and maximum forced displacement. The maximum strain rate increases with increasing the tensile speed u/t, but the strain rate concentration factor is found to be constant independent of tensile speed, which is defined as the maximum strain rate appearing at the notch root over the average nominal strain rate at the minimum section . It is found that the strain rate at the notch root depends on the dynamic stress rate at the notch root and independent of the notch root radius ρ. It is found that the difference between the static and dynamic maximum stress concentration (σyA,max ? σyA,st) at the notch root is proportional to the tensile speed when u/t = 5000 mm/s. Strain rate concentration factors are also discussed with varying the notch depth and specimen length. Based on the elastic strain rate concentration factor, the master curve is obtained useful for understanding the impact fracture of polycarbonate for the wide range of temperature and impact speed.  相似文献   

14.
A Finite Fracture Mechanics (FFM) criterion is formalized to predict the critical failure loads of brittle U‐notched specimens, subjected to mode I loading. The criterion, recently applied to V‐notched structures, requires the contemporaneous fulfilment of stress requirements and energy conditions for fracture to propagate: the stress field ahead of the notch tip and the stress intensity factor related to a crack stemming from the root are involved. Both the apparent fracture toughness and the critical crack advancement result to be structural parameters. For sufficiently slender notches, the root radius becomes the only relevant geometric dimension. The consistency of the approach is proved by the comparison with experimental data available in the Literature.  相似文献   

15.
16.
The results of extrapolation procedures for the determination of structural stresses are often questionable due to the fact that the stresses at extrapolation points obtained with finite element analyses can be strongly dependent on the mesh size of finite element model and loading mode. Also, existing design S–N curves are derived mostly on the basis of fatigue testing of joints loaded axially. In the present paper the influence of the finite element mesh size on the structural stress value determined by a linear extrapolation method is analysed. Also, the paper examines the possibility of using existing design S–N curves for cases of bending induced by a force on the welded stiffener. Fatigue test results from aluminium welded components with longitudinal or round pad stiffeners subjected to bending loads have been assessed using a structural stress range approach, and compared with the structural stress design S–N curve FAT 40 (IIW) and the structural stress design S–N curve FAT 44 (Eurocode 9). It is concluded that the more precise estimation of fatigue life of aluminium components subjected to bending can be achieved with structural stress design S–N curve proposed by Eurocode 9. The conclusions also include recommendations for regarding component finite element modelling for the determination of structural stresses in case of bending.  相似文献   

17.
In engineering practice, it is generally accepted that most of components are subjected to multiaxial stress‐strain state. To analyse this complicated loading state, different types of specimens of 2A12 (2124 in the United States) aluminium alloy were tested under multiaxial loading conditions and a new multiaxial fatigue analysis method for the state of three‐dimensional stress and strain is proposed. Elastic‐plastic finite element method (FEM) and a proposed vector computing method are used to describe the loading state at the critical point of specimen, by which the parameter ΓT is calculated at the new defined subcritical plane to consider the effect of additional cyclic hardening. Meanwhile, the principal equivalent strain is still calculated at the traditional critical plane. The new damage parameter is composed of different process parameters, by which the dynamic path of strain state, including loading environments and material properties, are fully considered in one loading cycle. According to experimental verifications with 2A12 aluminium alloy, the results show that the proposed method shows satisfactory, accurate, and reliable results for multiaxial fatigue life prediction in the state of three‐dimensional stress and strain.  相似文献   

18.
The aim of this work is to present an engineering method based on linear elastic finite element (FE) analyses oriented to fatigue strength assessments of fillet‐welded joints made of steel or aluminium alloys and subjected to mode I loading in the weld toe region where fatigue cracks nucleate. The proposed approach combines the robustness of the notch stress intensity factor approach with the simplicity of the so‐called ‘peak stress method’. Fatigue strength assessments are performed on the basis of (i) a well‐defined elastic peak stress evaluated by FE analyses at the crack initiation point (design stress) and (ii) a unified scatter band (design fatigue curve) dependent on the class of material, i.e. structural steel or aluminium alloys. The elastic peak stress is calculated by using rather coarse meshes with a fixed FE size. A simple rule to calculate the elastic peak stress is also provided if a FE size different from that used in the present work is adopted. The method can be applied to joints having complex geometry by adopting a two‐step analysis procedure that involves standard finite element (FE) models like those usually adopted in an industrial context. The proposed approach is validated against a number of fatigue data published in the literature.  相似文献   

19.
In this paper, the influence of the residual compressive stresses induced by roller burnishing on fatigue crack propagation in the fillet of notched round bar is investigated. A 3D finite element simulation model of rolling has allowed to introduce a residual stress profile as an initial condition. After the rolling process, fatigue loading has been applied to three‐point bending specimens in which an initial crack has been introduced. A numerical predictive method of crack propagation in roller burnished specimens has also been implemented. It is based on a step‐by‐step process of stress intensity factor calculations by elastic finite element analyses. These stress intensity factor results are combined with the Paris law to estimate the fatigue crack growth rate. In the case of roller burnished specimens, a numerical modification concerning experimental crack closure has to be considered. This method is applied to three specimens: without roller burnishing, and with two levels of roller burnishing (type A and type B). In all these cases, the computational finite element predictions of fatigue crack growth rate agree well with the experimental measurements. The developed model can be easily extended to crankshafts in real operating conditions.  相似文献   

20.
In this paper, a physics‐based multiscale approach is introduced to predict the fatigue life of crystalline metallic materials. An energy‐based and slip‐based damage criterion is developed to model two important stages of fatigue crack initiation: the nucleation and the coalescence of microcracks. At the microscale, a damage index is developed on the basis of plastic strain energy to represent the growing rate of a nucleated microcrack. A statistical volume element model with high computational efficiency is developed at the mesoscale to represent the microstructure of the material. Also, the formation of a major crack is captured by a coalescence criterion at mesoscale. At the macroscale, a finite element analysis of selected test articles including lug joint and cruciform is conducted with the statistical volume element model bridging two scale meshes. A comparison between experimental and simulation results shows that the multiscale damage criterion is capable of capturing crack initiation and predicting fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号