首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The fatigue limit diagram provides the critical condition of non‐failure against fatigue under constant amplitude loading. The fatigue limit diagram is usually considered to give the allowable stress if every stress component is kept within the fatigue limit diagram. In the case of variable amplitude fretting fatigue, however, this study showed that fatigue failure could occur even when all stresses were within the fatigue limit diagram. An example of such a condition is a repeated two‐step loading such as when the first step stress is R=?1 and the second step stress has a high mean value. The reason why such a phenomenon occurs was investigated. A non‐propagating crack was formed by the first step stress even when well below the fatigue limit. The resultant non‐propagating crack functioned as a pre‐crack for the second step stress with a high mean value. Consequently, fatigue failure occurred even when every stress was within the fatigue limit diagram of constant amplitude loading. The fatigue limit diagram obtained in constant amplitude fatigue test does not necessarily guarantee safety in the case of variable amplitude loading in fretting fatigue.  相似文献   

2.
The influence of prior low‐cycle fatigue (LCF) on the residual fatigue life was investigated experimentally. A Ni‐based alloy was cyclically loaded under stress‐controlled low‐high (LH) block loading. In the first loading step, low‐amplitude loading was performed with the stress amplitude of 283.5MPa at 710°C. Different cycles of preloading were performed, varying from 100 to 10 000. Subsequently, high‐amplitude fatigue loading was carried out with the stress amplitude of 315MPa at 800°C. Experimental results show that the previous loading was beneficial to the residual fatigue life when the consumed life fraction is below 0.2 and detrimental when the consumed life fraction is larger than 0.2. A novel nonlinear fatigue damage accumulation model was proposed to estimate the residual LCF life under LH loading path considering the effects of load sequence and preloading cycles. The proposed model provided a better life prediction than some existing models, such as Kwofie‐Rahbar model, Miner' rule, Peng model, and Ye‐Wang model. Lastly, this model was further validated using various materials under LH and high‐low block loadings.  相似文献   

3.
The present paper investigates the application of the stochastic approach when the commonly adopted Miner's linear damage rule is implemented, both in its traditional and modified forms to include the presence of a random stress threshold (random fatigue limit), below which the rate of damage accumulation is reduced. Main steps are provided to obtain the simulated distribution of the accumulated damage under variable amplitude loading. When the stochastic approach is applied in the presence of a random fatigue limit, an additional correlation structure, which takes into account the fatigue limit value, must be introduced in the analysis. If the number of cycles to failure under constant amplitude loading is Weibull (Log‐Normal) distributed, then the corresponding accumulated damage is Fréchet (Log‐Normal) distributed. The effects of the correlation structure on reliability prediction under variable amplitude loading are also investigated. To this aim, several experimental datasets are taken from the literature, covering various metallic materials and variable amplitude block sequences. The results show that the choice of the damage accumulation model is a key factor to value the improvement in the accuracy of reliability predictions introduced by the stochastic approach. Comparison of the predicted number of cycles to failure with experimental data shows that larger errors are non‐conservative, regardless of the adopted correlation structure. When the analysis is limited to reliability levels above 80%, for these large non‐conservative errors, it is the quantile approach to be closer to actual experimental data, thus limiting the overestimation of component's life. For the experimental datasets considered in the paper, adoption of a stochastic approach would improve the accuracy of Miner's predictions in 10% of cases.  相似文献   

4.
In the present work, evolution of damage under high‐temperature (823 K) low cycle fatigue loading condition in near α IMI‐834 titanium alloy has been studied. The in situ damage has been experimentally measured during cyclic deformation using the alternating current potential drop (ACPD) technique. The measured damage curve has been compared with the damage curves calculated through mechanical variables such as cyclic modulus and stress amplitude. The ACPD damage curve has been found most sensitive towards high‐temperature low cycle fatigue damage evolution.  相似文献   

5.
Two methods based on local stress responses are proposed to locate fatigue critical point of metallic notched components under non‐proportional loading. The points on the notch edge maintain a state of uniaxial stress even when the far‐field fatigue loading is multiaxial. The point bearing the maximum stress amplitude is recognized as fatigue critical point under the condition of non‐mean stress; otherwise, the Goodman's empirical formula is adopted to amend mean stress effect prior to the determination of fatigue critical point. Furthermore, the uniaxial stress state can be treated as a special multiaxial stress state. The Susmel's fatigue damage parameter is employed to evaluate the fatigue damage of these points on the notch edge. Multiaxial fatigue tests on thin‐walled round tube notched specimens made of GH4169 nickel‐base alloy and 2297 aluminium‐lithium alloy are carried out to verify the two methods. The prediction results show that both the stress amplitude method and the Susmel's parameter method can accurately locate the fatigue critical point of metallic notched components under multiaxial fatigue loading.  相似文献   

6.
Based on Wang and Brown's reversal counting method, a new approach to the determination of the critical plane is proposed by the defined plane with a weight‐averaged maximum shear strain range under multiaxial variable amplitude loading. According to the determined critical plane, a detailed procedure of multiaxial fatigue life prediction is introduced to predict lives in the low‐cycle multiaxial fatigue regime. The proposed approach is verified by two multiaxial fatigue damage models and Miner's linear cumulative damage law. The results showed that the proposed approach can effectively predict the orientation of the failure plane under multiaxial variable amplitude loading and give a satisfactory life prediction.  相似文献   

7.
Design methods against multiaxial high‐cycle fatigue require the formulation of appropriate criteria that differ in the definition of critical measures introduced to quantify damage, as the amplitude of shear stress. The present paper proposes a novel approach to compute the amplitude of shear stress in multiaxial high‐cycle fatigue. The approach is based on the computation of the convex hull enclosing the stress history under investigation and is validated on proportional and non‐proportional paths in several dimensions and for different materials. High accuracy is achieved when compared with alternative methods from the literature.  相似文献   

8.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

9.
Experimental and analytical investigations of constant and variable amplitude fatigue life of not autofrettaged and autofrettaged components have been performed. In variable amplitude loading the new standardised CO mmon‐ RA il‐ L oad sequence CORAL has been used as well as two‐level‐tests with small cycles at high mean stresses interrupted by large cycles for the evaluation of load sequence effects. The results of the two level tests show that small cycles with amplitudes far below the fatigue limit cause fatigue damage. Life calculations have been performed according to the nominal stress approach with S‐N‐curves and improved Miner’s Rule, linear‐elastic fracture mechanics with 3D‐weight functions, elastic‐plastic fracture mechanics applying an extended strip yield‐model, and explicit 3D‐FE‐simulation of fatigue crack growth with predefined crack fronts. All approaches are appropriate for predicting realistic variable amplitude lives. From a practical point of view the explicit 3D‐FE‐simulation of fatigue crack growth is too time‐consuming. However, such simulations show that the approaches based on linear‐elastic fracture mechanics and elastic‐plastic fracture mechanics with extended strip yield‐model capture the essential physics of fatigue crack growth in a realistic way.  相似文献   

10.
It has been reported that high strength steel sheet cannot improve fatigue strength of components with a spot weld. The purpose of this study is to discuss the dominant factors on the fatigue strength of spot weld in order to clarify the reasons. A new fatigue testing technique is developed for a small specimen with a total length of less than 3 mm, and the local fatigue strength of heat‐affected zone (HAZ), which is the crack initiation site in the joint, in a mild steel sheet (270MPa‐grade) and a high strength steel sheet (590MPa‐grade) are evaluated by this technique. The fatigue strength of HAZ is almost equal in both steels although the tensile strength of the 590MPa steel is higher than that of the mild steel. The stress in the tensile‐shear spot‐welded joint under cyclic loading and the residual stress by the spot‐welding are evaluated by finite element analyses. The residual stress is tensile in both steels. However, the plastic deformation takes place in the joint of the mild steel and this releases the residual stress. On the other hand, the stress in the 590MPa steel is elastic and the residual stress decreases the allowable alternating stress. The stress under the condition of the experimental fatigue limit of the joint considering the residual stress coincides well with the fatigue limit diagram of HAZ, which means that the fatigue limit of the joint is determined by the fatigue limit of HAZ and the residual stress.  相似文献   

11.
This study deals with the modelling of damage evolution in the carbon/epoxy laminated composites under static and fatigue loading. A cumulative damage model is developed on the basis of damage evolution due to static and fatigue during cyclic loading. A continuum damage mechanics (CDM)‐based damage model coupling with the micromechanics has been utilized to predict the fatigue behaviour of laminate composites. A multicriterion approach has been introduced to predict the damage behaviour in the longitudinal, transverse, and shear direction at the ply scale. Extensive experimental results on T300/EPL1012 carbon/epoxy laminates are prepared to characterize under static and fatigue loading and to evaluate the proposed model in different conditions. The obtained results show that at the beginning of the cyclic loading, the damage grows suddenly and increases until final failure, which justifies the proposed method is able to predict the evolution of the damage due to static and fatigue loading separately during cyclic loading. The obtained results show that considering damage due to static loading leads to more accurate results, particularly in low‐cycle fatigue.  相似文献   

12.
This paper proposes an alternating bending technique for evaluating fatigue life in the low‐to‐high cycle fatigue regime. A method was developed for estimating the stress, elastic strain, and plastic strain ranges of a plastically deformed specimen subjected to alternating bending with consideration of stress and strain distributions. To evaluate its effectiveness, fatigue testing was conducted using a specimen made of a steel used for pressure vessels. The stress, elastic strain, and plastic strain ranges could be obtained during cyclic bending. The elastic strain amplitude life and plastic strain amplitude life curves were linear in a log–log plot in the low‐to‐high cycle fatigue regime. Hence, the fatigue life under alternating bending could be evaluated using the proposed strain‐based approach. However, these curves could not be predicted using equations with parameters obtained from tensile testing, such as the universal slope method, due to the strain gradient in the specimen.  相似文献   

13.
The small load has fuzziness on the strengthening and damage of the component under the action of random fatigue load. This paper introduces the two-dimensional membership function in fuzzy mathematics to characterize the relationship between stress amplitude, mean value, and damage below the fatigue limit. An exponential function is used to describe the strengthening effect. Under the two-dimensional load spectrum, the influence of various levels on the component's life is comprehensively considered, and the fatigue life prediction model under random load is proposed. Through the small sample experiment of the car swing support rod, the relevant parameters of the model are obtained. The difference between the modified two-dimensional and the two-dimensional load spectrum is compared in fatigue life prediction results. The rules of membership function selection and parameter setting are summarized, and it makes the estimation of component load spectrum life more reasonable.  相似文献   

14.
This paper describes the high temperature multiaxial creep–fatigue life prediction for type 304 stainless steel. Finite element analyses were performed for determining the stress–strain state in the gage part of a cruciform specimen subjected to creep–fatigue loading under four strain waves at three principal strain ratios. Creep–fatigue lives of cruciform specimens were discussed in relation to the principal stress amplitude calculated by finite element analysis. Creep–fatigue damage was evaluated by linear damage rule and the suitability of three low cycle fatigue and three creep damage parameters was discussed.  相似文献   

15.
Very high cycle fatigue (VHCF) properties of VDSiCr spring steel are investigated with ultrasonic equipment under fully reversed cyclic torsion loading and under cyclic axial loading at load ratios R = –1, R = 0.1 and R = 0.5. Shot‐peened specimens with surface finish similar to valve springs in combustion engines are tested until limiting lifetimes of 1010 cycles. Under cyclic torsion loading, specimens either fail below 106 cycles with crack initiation at the surface or they do not fail. Under cyclic axial loading, failures above 109 cycles were found for all load ratios with crack initiation at the surface or at internal inclusions. Ratio of mean endurance limit (50% failure probability at 1010 cycles) under fully reversed cyclic torsion and cyclic tension‐compression loading is 0.86. Cyclic torsion loading slightly below the endurance limit leads to cyclic softening first followed by cyclic hardening whereas cyclic stability is found for tension‐compression loading. Cyclic torsion reduces surface compression stresses whereas they are hardly affected by cyclic tension‐compression loading. Mean endurance limit at 1010 cycles for R = 0.1 is 61% of the endurance stress amplitude at load ratio R = –1, and for R = 0.5 it is 44% of the tension‐compression endurance limit. Endurance limits for cyclic torsion and cyclic tension‐compression loading are comparable, if effective stress amplitude is used that considers cyclic normal stresses and residual compression stresses at the surface.  相似文献   

16.
A method for evaluating the cumulative damage resulting from the application of cyclic stress (or strain) sequences of varying amplitude is presented. Both the crack initiation and propagation stages of the fatigue failure process are included. The development is based on the concept of plastic strain energy dissipation as a function of cyclic life. The damage accumulated at any stage is evaluated from a knowledge of the fatigue limit in the initiation phase and an ‘apparent’ limit obtained through fracture mechanics for the propagation phase. The proposed damage theory is compared with two-level strain cycle test data of thin-walled specimens, and is found to be in fairly good agreement.  相似文献   

17.
A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.  相似文献   

18.
A high‐cycle fatigue life model for structures subjected to variable amplitude multiaxial loading is presented in this paper. It treats any kind of repeated blocks of variable amplitude multiaxial loading without using a cycle counting method. This model based on a mesoscopic approach is characterized by the following features: (i) the choice of a damage factor related to the accumulated mesoscopic plastic strain per stabilised cycle; (ii) the use of a mesoscopic mechanical behaviour taking into account the fatigue mechanisms such as plasticity and void growth. This behaviour is a von Mises elastoplastic model with linear kinematic hardening and hydrostatic stress dependent yield stress. The fatigue life model has six parameters identified with one SN curve and two fatigue limits. In‐phase and out‐of‐phase experimental tests from the literature are simulated. The predicted fatigue lives are compared to experimental ones.  相似文献   

19.
Low‐cycle fatigue data of type 304 stainless steel obtained under axial‐torsional loading of variable amplitudes are analyzed using four multiaxial fatigue parameters: SWT, KBM, FS and LKN. Rainflow cycle counting and Morrow's plastic work interaction rule are used to calculate fatigue damage. The performance of a fatigue model is dependent on the fatigue parameter, the critical plane and the damage accumulation rule employed in the model. The conservatism and non‐conservatism of predicted lives are examined for some combinations of these variables. A new critical plane called the weight function‐critical plane is introduced for variable amplitude loading. This approach is found to improve the KBM‐based life predictions.  相似文献   

20.
Fatigue damage, time‐dependent creep damage and their interaction are considered as the main failure mechanisms for many high temperature structural components. A generalized methodology for predicting both the high temperature low cycle fatigue (HTLCF) and creep‐fatigue lives by using the hysteresis energy density rate (HEDR) and fatigue damage stress concepts was proposed. Experimental data for HTLCF and creep‐fatigue in Alloy 617, Haynes 230 and P92 steel were respectively collected to validate the method. A better prediction capacity and most of the data points that fall within a 1.5 scatter band were obtained compared with the traditional energy‐based method, time fraction rule and ductility exhaustion model. Moreover, a creep‐fatigue damage diagram was also constructed by using the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号