共查询到20条相似文献,搜索用时 9 毫秒
1.
V. Kliman 《International Journal of Fatigue》1985,7(1):39-44
A procedure for estimating the useful life of a component for a given (admissable) probability of fatigue fracture origination under random loading is presented. The method uses material constants obtained from the S/N and cyclic stress/strain curves, standard deviation and probability density distribution of the loading process and a macroblock of harmonic cycles obtained by applying the rainflow cycle counting method to the random loading process. Theoretical and experimental lives are found to exhibit good agreement. 相似文献
2.
3.
In hot forging operations, the die surfaces and the nearest surface layers of the die undergo mechanical and thermal cycles which significantly influence their service life. The real thermal and mechanical cycles have been previously investigated in forging plants by measurements and numerical simulation, and a reasonable variation window of process parameters has been determined. A new simulative test applied to AISI H11 hot working die steel has been used to generate failure data in conditions similar to those of the forging dies, but under a more controlled and economical method. Fracture surfaces of specimens for different tests observed by scanning electron microscopy (SEM) indicate that both thermo-mechanical fatigue (TMF) and creep phenomena can be considered to be main damage mechanisms and their contribution to the failure differs as testing conditions vary. As a result of the experiments, the failure is affected by both thermo-mechanical cycle and resting time at high temperature. Therefore, the authors developed a new lifetime prediction model obtained by combining the damage evolution laws, at each cycle, for pure creep and pure TMF. This combination was based on the linear accumulation rule. The damage evolution law for pure creep is obtained by modifying Rabotnov's law in order to suit the case of actual hot forging cycles, where temperature and stress vary widely. The damage evolution law for pure TMF is based on a generalization of the Wöhler–Miner law. This law is modified in order to take into account the presence of thermal cycle and thermal gradient. Comparison between the experimental cycles to failure and the predicted ones was performed using tests excluded in the determination of the coefficients. The conclusion was that the accuracy of prediction appears to be quite good and that the linear accumulation and interaction of TMF and creep is confirmed. 相似文献
4.
F. BIGLARI P. LOMBARDI S. BUDANO C. M. DAVIES K. M. NIKBIN 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(12):1079-1087
Experimental data have been generated and finite element models developed to examine the low cycle fatigue (LCF) life of a 9Cr (FB2) steel. A novel approach, employing a local ductile damage initiation and failure model, using the hysteresis total stress–strain energy concept combined with element removal, has been employed to predict the failure in the experimental tests. The 9Cr steel was found to exhibit both cyclic softening and nonlinear kinematic hardening behaviour. The finite element analysis of the material's cyclic loading was based on a nonlinear kinematic hardening criterion using the Chaboche constitutive equations. The models’ parameters were calibrated using the experimental test data available. The cyclic softening model in conjunction with the progressive damage evolution model successfully predicted the deformation behaviour and failure times of the experimental tests for the 9Cr steels performed. 相似文献
5.
The influence of cyclic creep accumulation rate on the damage evolution of MDYB‐3 polymethyl methacrylate (PMMA) was experimentally investigated. Fatigue tests were carried out at four stress levels by stress control mode. The steady cyclic creep accumulation stage was observed occupying a substantial proportion of all specimens fatigue processes. Cyclic creep strain growth speed and relaxed modulus degradation rate were deduced as two important indicators for describing the damage evolution characteristics. Linear evolution relations of cyclic creep strain and modulus degradation with cycle times were retrieved from different terms of hysteresis loops. A preliminary model was proposed to be able to estimate the damage extent at different cyclic stress levels. The life predictions by the proposed model were compared with the experiment results and the classical power S–N model, which were demonstrated as a good estimation for the fatigue life. It is feasible to make durability evaluations by the characteristics of steady cyclic creep for multiaxis directed PMMA material. 相似文献
6.
对DZ125定向凝固铸造镍基高温合金进行了应变比为-1.0的同相位三角波和同相位梯形波,550℃()1000℃热/机械疲劳实验研究.实验结果表明:在相同应变幅下,同相位三角波载荷情况下的热/机械疲劳寿命比同相位梯形波载荷情况下的热/机械疲劳寿命长.研究了在两种载荷情况下材料的热/机械疲劳循环应力响应行为.试样断口的微观分析表明:在热/机械疲劳过程中,同时存在疲劳、蠕变和氧化损伤;在同相位三角波载荷下,穿晶 沿晶断裂为疲劳断裂的主要特征;在同相位梯形波载荷下,裂纹主要为沿晶萌生与扩展.这是导致在同相位梯形波载荷下疲劳寿命缩短的主要原因. 相似文献
7.
Abstract: The article focuses on the application of a recently developed damage operator‐based lifetime calculation to a thermomechanically loaded exhaust downpipe. The damage operator approach enabling online continuous damage calculations for isothermal and non‐isothermal loading with mean stress corrections is reviewed. The article also highlights an extension of the strain‐life approach to take into account viscoplastic effects and creep. The transient results from thermal and structural analyses using finite element analyses have been applied to the exhaust downpipe in LMS Virtual.Lab and the damage predicted. Tested exhaust downpipes were then subjected to the same loading conditions as in the calculation, and load cycles were repeated up to the point of failure. Simulated and test results are comparable. 相似文献
8.
Kaustav Barat S. Sivaprasad Sujoy Kumar Kar Soumitra Tarafder 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(12):2823-2843
The influence of various strain waveforms on the low‐cycle fatigue of IN 718 tested at 650°C has been investigated. The straining paths are accompanied by dwell‐induced creep component(s) or unequal strain distribution in different portions of cycles reducing strength of material. The investigation intends to clarify mainly mechanistic aspects of relaxation‐fatigue interaction. Features of time‐dependent effect induced by nonpeak dwell and the same accompanied by peak dwell, slow unloading from the peak to a lower strain, and different loading and unloading rates are compared in terms of stress amplitude responses, mean stress relaxation, hysteresis loops, life, and damage parameter DC‐F. Softening is common in all the cases, and degree of softening varies linearly with life. The energy‐based life prediction model has been found to work well for the data, and we have introduced energy fraction–based approach to observe simultaneous contribution from both creep and fatigue on life. 相似文献
9.
10.
老化沥青混合料粘弹性疲劳损伤模型研究 总被引:3,自引:0,他引:3
为了较真实反映沥青路面服务期的疲劳损伤特性,从粘弹性材料的基本特性出发,通过本构方程和耗散能的定义构造了耗散能的泛函,定义耗散能为损伤变量,建立基于Burgers模型的老化沥青混合料粘弹性疲劳损伤模型,通过直接拉伸试验确定沥青混合料的粘弹性参数,求出损伤函数、损伤演化方程,提出一种考虑疲劳过程中老化程度对疲劳损伤影响的累积疲劳损伤计算理论与方法,为沥青混合料在不同老化程度下的疲劳寿命预估提供了依据。根据疲劳损伤模型推导出沥青混合料临界损伤度、疲劳寿命计算公式,并对其进行计算比较,精度满足要求,从而验证了粘弹性疲劳损伤模型的合理性。 相似文献
11.
12.
This paper reviews the fundamentals of the development of creep damage constitutive equations for high Cr steels including (1) a concise summary of the characteristics of creep deformation and creep damage evolution and their dependence on the stress level and the importance of cavitation for the final fracture; (2) a critical review of the state of art of creep damage equation for high Cr steels; (3) some discussion and comments on the various approaches; (4) consideration and suggestion for future work. It emphasises the need for better understanding the nucleation, cavity growth and coalesces and the theory for coupling method between creep cavity damage and brittle fracture and generalisation. 相似文献
13.
14.
采用不同应力比条件下的16MnR钢紧凑拉伸试样,设计了三种有限元分析模型,即不考虑加载历史效应的静态裂纹扩展模型,同时考虑加载历史和裂纹闭合的动态裂纹扩展模型以及仅考虑加载历史的伪动态裂纹扩展模型,对疲劳裂纹闭合过程、裂纹尖端的应力-应变迟滞环、疲劳损伤和裂纹扩展速率进行了数值模拟与分析,进而着重探讨了加载历史和裂纹闭合影响疲劳裂纹扩展行为的交互作用机制。结果表明:对于同类分析模型,应力比越大越不容易产生裂纹闭合;而在应力比相同的情况下,加载历史引起的残余压应力对裂纹闭合有明显的促进作用。裂纹闭合效应阻碍了平均应力的松弛,减小了裂纹尖端附近的应力-应变场强度、疲劳损伤和裂纹扩展速率,而加载历史引起的残余压应力则加快了平均应力的松弛和抑制了棘轮效应。与实验结果比较发现,只有同时考虑了裂纹闭合效应和加载历史影响的动态裂纹扩展模型,才能对疲劳裂纹扩展行为进行准确、定量的模拟。 相似文献
15.
疲劳/蠕变复合作用下聚苯乙烯的交互损伤研究 总被引:3,自引:0,他引:3
探讨了在疲劳/蠕变复合作用下聚苯乙烯的损伤交互作用,结果表明,在疲劳/蠕变复合作用下聚苯乙烯存在疲劳和蠕变的交互损伤,其断裂寿命比纯疲劳或纯蠕变的断裂寿命低;断裂机制是疲劳循环载荷松动和活化了分子链或链段,从而促进蠕变运动和断裂,并且,疲劳/蠕变的交互损伤程度与温度密切相关。 相似文献
16.
17.
Yutaro Ota Keiji Kubushiro Yasuhiro Yamazaki 《Fatigue & Fracture of Engineering Materials & Structures》2022,45(1):259-269
Low cycle fatigue (LCF) life at ambient temperature of Ti alloys is well known to decrease with stress dwell. This phenomenon, called cold dwell fatigue (CDF), is influenced by the peak stress, dwell time, and microstructure. For this study, the CDF life was evaluated by the linear cumulative damage rule. The influence of test conditions and microstructure on the linear cumulative damage rule was also verified. By the linear cumulative damage rule, when creep damage is calculated using the time exhaustion rule, theCDF damage was evaluated by the inequality of DTotal = (DF, DC) ≤ (0.01, 10?6). However, the CDF damage can be evaluated in the range of DTotal = 0.6–1.2 when creep damage was calculated using the ductile exhaustion rule. Results indicate that the evaluation was almost independent of the dwell time, peak stress, and microstructure, so it is also a versatile method for evaluating CDF responses. 相似文献
18.
由损伤力学理论可知,疲劳是由材料内部的损伤演化导致的,但其损伤演化的机理并不清楚。为此,我们将高分子物理中断裂的分子理论推广应用于金属的疲劳损伤,认为金属的断裂是一个松驰过程,宏观断裂是微观原子键断裂热活化的结果。以Q235钢为例,在CMT5105万能电子试验机上进行拉压非对称循环疲劳试验。从原子键离解的视角出发并结合试验数据,讨论并推算诸多因素影响下匀、变速加载时非对称循环疲劳损伤演化律的具体形式。再将速率作为重点考虑因素提出了新的疲劳损伤演化律,分别讨论了匀、变速情况下损伤演化律的基本形式,并对速率相关参数因子进行了修正。结果表明,新的疲劳损伤演化律形式简单、参数少、应用广泛且与试验结果贴合较好。 相似文献
19.
连续碳化硅纤维增强碳化硅基复合材料(SiCf/SiC)因其轻质、耐高温和高损伤容限的优点而成为下一代航空发动机的重要热结构材料。然而,疲劳实验周期长、成本高的缺点严重制约了对复杂细观结构SiCf/SiC的深入理解及其工程应用。为充分发挥SiCf/SiC的优势与可调性,实现对结构载荷响应预测并进行优化设计,本文采用疲劳迟滞模型和渐进损伤理论分别对单向、正交和二维编织SiCf/SiC的疲劳寿命曲线进行了分析。通过对界面剪应力(±20%)、纤维强度(±5%)、纤维威布尔模量(±1%)和纤维体积分数(±5%)进行偏值处理实现了对SiCf/SiC疲劳寿命的敏感性评价,得到的疲劳寿命曲线上下限能够包络主要实验结果。根据上述分析结果,验证了以损伤参数控制危险估计和保守估计的疲劳寿命曲线拟合方法,并以SiCf/SiC涡轮叶片模拟结构为例现实了该方法用于实际工程评价分析的可行性。 相似文献
20.
J.-L. Chaboche & F. Gallerneau 《Fatigue & Fracture of Engineering Materials & Structures》2001,24(6):405-418
Lifetime prediction techniques for components working at elevated temperature are revisited. Two damage approaches in which time effects at high temperature are introduced in different ways are discussed in greater detail. First, a creep–fatigue damage model considers the interaction of the two processes during the whole life before macrocrack initiation; and second, a creep–fatigue–oxidation model separates the fatigue life into two periods: during initiation the environment-assisted processes interact with fatigue, although bulk creep damage only interacts during the micropropagation period. The second model is illustrated by its application to a coated single-crystal superalloy used in aerojet turbine blades. Its capabilities are illustrated in a number of isothermal and thermomechanical fatigue tests. Anisotropy effects are also briefly discussed and a special test, introducing cyclic thermal gradients through the wall thickness of a tubular component, demonstrates the predictive capabilities for actual engine conditions. 相似文献