首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The non-linear stress–strain behaviour of plant fibre composites is well-known in the scientific community. Yet, the important consequences of this, in terms of the evolution of stiffness as a function of applied strain and cycles to failure, are not well-studied in literature. This is despite the fact that stiffness degradation is a well-accepted indicator of damage in a composite material, and is regularly used as a component failure criterion. This article systematically explores the evolution of stiffness of various aligned plant fibre composites, subjected to (i) monotonic loading, (ii) low-cycle, repeated progressive loading, and (iii) fatigue loading. The evolution in stiffness in plant fibre composites is found to be complex: structural changes in the elementary fibre cell wall and damage development in the composite have often competing effects on stress–strain behaviour. Indeed, the evolution in stiffness of plant fibre composites is found to be unlike that typically observed in traditional composites, and therefore needs to be taken into account in the design of structural components.  相似文献   

2.
The interest in using fibre‐reinforced composites in structural components is increasing. Some of these structural composites, such as wind turbine blades, aircraft components and torsion shafts are subject to fatigue loadings. It is widely accepted that fully reversed cyclic loading is the most adverse loading for fibre‐reinforced composites, but the modelling of the material behaviour under this loading condition is very difficult. In this paper, a damage model is presented for woven glass fibre‐reinforced composites subject to fully reversed cyclic loading. First fatigue experiments have been conducted in displacement‐controlled fully reversed bending and the stiffness degradation and damage patterns have been observed. Based on these experimental data, a damage model has been developed, which includes the in‐plane stress components and the degradation of the in‐plane elastic properties. The model has been implemented in a commercial finite‐element code and simulation of the successive stages in the fatigue life has been performed. The model has been validated for a plain woven glass fabric reinforced composite and simulated stiffness degradation, damage growth and damage distribution have been compared with experimental data.  相似文献   

3.
The mechanical properties of fibre-reinforced thermoplastics and their dependencies on the manufacturing process, fibre properties, fibre concentration and strain rate have been researched intensively for years in order to predict their macroscopic behaviour by numerical simulations as precisely as possible. Including the microstructure in both real and virtual experiments has improved prediction precision for injection-moulded glass fibre-reinforced thermoplastics significantly. In this work, we apply three established methods for characterisation and modelling to an injection-moulded and to a 3D printed material. The geometric properties of the fibre component as fibre orientation, fibre length and fibre diameter distributions are identified by analysing reconstructed tomographic images. For comparing the fibre lengths, a recently suggested new method is applied. Based on segmentations of the tomographic images, we calculate the elastic stiffness of both composites numerically on the microscale. Finally, the mechanical behaviour of both materials is experimentally characterised by micro tensile tests. The simulation results agree well with the measured stiffness in case of the injection-moulded material. However, for the 3D printed material, measurement and simulation differ strongly. The prediction from the simulation agrees with the values expected from the image analytic findings on the microstructure. Therefore, the differences in the measured behaviour have to be contributed to the matrix material. This proves demand for further research for 3D printed materials for predictable prototypes, preproduction series and possible serial application.  相似文献   

4.
The FE implementation of FADAS, a material constitutive model capable of simulating the mechanical behaviour of GFRP composites under variable amplitude multiaxial cyclic loading, was presented. The discretization of the problem domain by means of FE is necessary for predicting the damage progression in real structures, as failure initiates at the vicinity of a stress concentrator, causing stress redistribution and the gradual spread of damage until the global failure of the structure. The implementation of the stiffness and strength degradation models in the principal material directions of the unidirectional ply was thoroughly discussed. Details were also presented on the FE models developed, the computational effort needed and the definition of final failure considered. Numerical predictions were corroborated satisfactorily by experimental data from constant amplitude uniaxial fatigue of multidirectional glass/epoxy laminates under various stress ratios. The validation of predictions included fatigue strength, stiffness degradation and residual static strength after cyclic loading.  相似文献   

5.
Damage and failure behaviour of a woven C/SiC material   总被引:2,自引:0,他引:2  
The mechanical behaviour of a C/SiC material, infiltrated by liquid silicon, was investigated. Structural features have been attributed to the damage and failure behaviour of the material. The material can be described by a two-component model: the fibre bundles in the loading direction (component 1), and the rest of structure (component 2). The fibre bundles in the loading direction largely determine the deformation and failure behaviour, whereas the rest of the structure essentially determines the damage behaviour of the material. The structural features do not undergo changes up to 1400°C in mechanical tests, whereas the mechanical properties undergo slight changes. Heat treatment of the material at elevated temperatures causes a change in the structural features and leads to a reduction in strength and in interlaminar shear strength. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
The fatigue behaviour of the laminated thermosetting Fiberdux 6376-HTA composite material is studied experimentally for both constant and variable amplitude stress reversal loading. The fatigue-induced material degradation is correlated to non-destructive evaluation data obtained from C-scan graphs through the concept of the damage severity factor ( DSF ). The DSF is able to account for the varying severity of damage at the different specimen locations and is used to quantify the fatigue-induced damage. The concept of the DSF , introduced earlier by the authors for constant amplitude fatigue loading of thermoplastic fibrous composites, is applied to characterize fatigue damage of thermosetting fibrous composites and is extended to account for variable amplitude loading. Constant amplitude fatigue tests at various stress levels were performed to correlate fatigue damage to the change of mechanical properties, such as axial stiffness, residual tensile strength and interlaminar shear strength, and to develop expressions to relate DSF to the degradation of the mechanical properties with increasing fatigue damage. Correlation between DSF evolution and consumed fatigue life is made and fatigue damage functions involving stress amplitude dependency are formulated. These expressions together with a modified rainflow method are then used to assess fatigue life under variable amplitude fatigue loading; computed fatigue lives are compared against experimental results.  相似文献   

7.
In this paper, a behaviour model for damageable elastoplastic materials reinforced with short fibres that have complex orientations is proposed. The composite material is seen as the assembly of the matrix medium and several linear elastic fibre media. Its macroscopic behaviour is computed thanks to an additive decomposition of the state potential, with no need to implement complex methods of homogenisation. A 4th-order tensor that depends on the characteristics of each fibre medium is introduced to model the anisotropic damage of the matrix material induced by the reinforcement, as well as the progressive degradation of the fibre–matrix interface. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The model is tested for the case of a polyamide reinforced with different contents of short-glass fibres with distributed orientations and subjected to uniaxial tensile tests in different loading directions. The comparison of the results with experimental data (extracted from the literature) demonstrates the efficiency of the model.  相似文献   

8.
《Composites Part A》2002,33(3):315-321
Success with the high strain rate testing of polymer composites has been limited by the ability to isolate the inherent inertial disturbances attributed to the test system. This necessitated the development of a technique for the prediction of high strain rate material property data. The resulting data were used in a finite element analysis (FEA) to simulate impact behaviour of glass fibre reinforced composites. High strain rate properties obtained by extrapolating results of experiments conducted at low to intermediate strain rates were used in the FEA of a simple three-point bend beam impact. Three point bend impact tests were performed on the laminates, and comparisons were made of the results predicted from this analysis and actual impact test data.The results show that the finite element model created may be used to predict the behaviour of woven glass laminates. However, the inclusion of flexible post-failure degradation rules to allow for progressive damage, will improve the accuracy of the analysis.  相似文献   

9.
Numerical simulations of damage evolution in composites reinforced with single and multifibre are presented. Several types of unit cell models are considered: single fibre unit cell, multiple fibre unit cell with one and several damageable sections per fibres, unit cells with homogeneous and inhomogeneous interfaces, etc. Two numerical damage models, cohesive elements, and damageable layers are employed for the simulation of the damage evolution in single fibre and multifibre unit cells. The two modelling approaches were compared and lead to the very close results. Competition among the different damageable parts in composites (matrix cracks, fibre/matrix interface damage and fibre fracture) was observed in the simulations. The strength of interface begins to influence the deformation behaviour of the cell only after the fibre is broken. In this case, the higher interface layer strength leads to the higher stiffness of the damaged material. The damage in the composites begins by fibre breakage, which causes the interface damage, followed by matrix cracking.  相似文献   

10.
A micromechanical model based on a probabilistic approach is implemented in the finite element code CASTEM 2000 to develop numerical simulations that efficiently predict the overall damaged behaviour of random oriented fibre composites. The proposed damage constitutive model is based upon the generalised Mori and Tanaka scheme and Eshelby's equivalence theory. Damage mechanisms occurring at each composite constituent (fibres, matrix and interface) are associated to Weibull probabilistic functions to model their onset and progressive growth at the microscopic scale level. It is obvious that the damaged behaviour of the composite material depends widely on the microscopic material parameters (fibre length, fibre volume fraction, fibre orientation, …). On one hand, the micromechanical model uses homogenisation techniques which enabled us to link these microscopic parameters to the material behaviour and to evaluate explicitly their influences. On the other hand, the implementation of the derived behaviour law into a finite element code enabled us to reflect on the effect of these microscopic parameters on the overall response of a simple composite structure presenting heterogeneous stress fields. In fact, the damage evolution in each constituent (local scale) and the related stiffness reduction are estimated at any material point (integration point) or node of the considered structure subject to a specific loading. Numerical simulations of a composite plate with a hole under in-plane tension were performed to validate the implementation of the behaviour law. Numerical results have been compared to experimental curves and damage evolutions monitored by acoustic emission techniques. Simulations agree well with experimental results in terms of damage onset and growth.  相似文献   

11.
A non-destructive testing method based on polarization effects of ultrasonic transverse waves is suggested to monitor fatigue damage in polymer matrix composites. Using a transverse wave probe in reflection mode, phase and amplitude of its output signal are measured as a function of the polarization angle. From the material properties of a single ply and the proposed calculation approach, the birefringence response of carbon fibre reinforced polymers composed of many plies with different fibre orientations is predicted. The effect of ply sequence is investigated using two types of quasi-isotropic specimens with different layups. Cyclic tensile loading of composites results in fatigue damage that is characterised by matrix cracking along the fibre direction through the thickness of each ply. These myriads of transverse cracks affect the ultrasonic attenuation and degrade the homogenised stiffness of single plies. In the experiments, stepwise increase of fatigue damage is alternated with ultrasonic measurements, which show the effect of ply-dependent crack densities on the birefringence behaviour. Simulated and measured transverse wave response are matched by variation of the input parameters shear moduli and attenuations, which are therefore the final results. The obtained data from the investigated composite specimens is proposed to characterise the distinct fatigue state for each ply orientation.  相似文献   

12.
Even if the extent of fatigue damage in fibre-reinforced plastics is limited, it can already affect the elastic properties. Therefore, the damage initiation and propagation in composite structures is monitored very carefully. Beside the use of nondestructive testing methods (ultrasonic inspection, optical fibre sensing), the follow-up of the degradation of engineering properties such as the stiffness is a common approach.In this paper, it is proved that the Poisson’s ratio can be used as a sensitive indicator of fatigue damage in fibre-reinforced plastics. Static tests, quasi-static cyclic tests and fatigue tests were performed on [0°/90°]2s glass/epoxy laminates, and longitudinal and transverse strain were measured continuously. The evolution of the Poisson’s ratio νxy versus time and longitudinal strain εxx is studied. As the transverse strain measurement is crucial to monitor the degradation of the Poisson’s ratio, three techniques were applied to measure the transverse strain (strain gauges, mechanical extensometer and external optical fibre sensor).Finally, the technique has been applied to a totally different material: a carbon fabric thermoplastic composite. The results show a very similar degradation of the Poisson’s ratio, although no stiffness degradation can be observed during fatigue loading of this material.It is concluded that the degradation of the Poisson’s ratio can be a valuable indicator of fatigue damage, in combination with the stiffness degradation.  相似文献   

13.
Modelling of fatigue damage progression and life of CFRP laminates   总被引:1,自引:0,他引:1  
A progressive fatigue damage model has been developed for predicting damage accumulation and life of carbon fibre‐reinforced plastics (CFRP) laminates with arbitrary geometry and stacking sequence subjected to constant amplitude cyclic loading. The model comprises the components of stress analysis, fatigue failure analysis and fatigue material property degradation. Stress analysis of the composite laminate was performed by creating a three‐dimensional finite element model in the ANSYS FE code. Fatigue failure analysis was performed by using a set of Hashin‐type failure criteria and the Ye‐delamination criterion. Two types of material property degradations on the basis of element stiffness and strength were applied: a sudden degradation because of sudden failure detected by the fatigue failure criteria and a gradual degradation because of the nature of cyclic loading, which is driven by the increased number of cycles. The gradual degradation of the composite material was modelled by using functions relating the residual stiffness and residual strength of the laminate to the number of cycles. All model components have been programmed in the ANSYS FE code in order to create a user‐friendly macro‐routine. The model has been applied in two different quasi‐isotropic CFRP laminates subjected to tension–compression (T–C) fatigue and the predictions of fatigue life and damage accumulation as a function of the number of cycles were compared with experimental data available in the literature. A very good agreement was obtained.  相似文献   

14.
Unidirectional flax/polyethylene terephthalate composites are manufactured by filament winding, followed by compression moulding with low and high consolidation pressure, and with variable flax fibre content. The experimental data of volumetric composition and tensile stiffness are analysed with analytical models, and the composite microstructure is assessed by microscopy. The higher consolidation pressure (4.10 vs. 1.67 MPa) leads to composites with a higher maximum attainable fibre volume fraction (0.597 vs. 0.530), which is shown to be well correlated with the compaction behaviour of flax yarn assemblies. A characteristic microstructural feature is observed near the transition stage, the so-called local structural porosity, which is caused by the locally fully compacted fibres. At the transition fibre weight fraction, which determines the best possible combination of high fibre volume fraction and low porosity, the high pressure composites show a higher maximum performance in terms of tensile stiffness (40 vs. 35 GPa). The good agreement with the model calculations (fibre compaction behaviour, and composite volumetric composition and mechanical properties), allows the making of a property diagram showing stiffness of unidirectional flax fibre composites as a function of fibre weight fraction for consolidation pressures in the range 0–10 MPa.  相似文献   

15.
16.
《Composites Part B》2002,33(7):521-529
A parametric finite element analysis was conducted to investigate the effect of failure criteria and material property degradation rules on the tensile behaviour and strength of bolted joints in graphite/epoxy composite laminates. The analysis was based on a three-dimensional progressive damage model (PDM) developed earlier by the authors. The PDM comprises the components of stress analysis, failure analysis and material property degradation. The predicted load–displacement curves and failure loads of a single-lap single-bolt joint were compared with experimental data for different joint geometries and laminate stacking sequences. The stiffness of the joint was predicted with satisfactory accuracy for all configurations. The predicted failure load was significantly influenced by the combination of failure criteria and degradation rules used. A combination of failure criteria and material property degradation rules that leads to accurate strength prediction is proposed. For all the analyses performed, the macroscopic failure mechanism of the joint and the damage progression were also predicted.  相似文献   

17.
Favourable specific mechanical properties of polymer matrix composites make them an attractive material for application in many engineering structures for which they offer substantial improvements over metals. The paper deals with fretting behaviour of unidirectional glass epoxy composites/metal contacts. Fretting is a plague for many industries: failures, loss of matter, loss of function can be induced by fretting. It occurs in all quasi-static contacts and appears as a complex wear phenomenon where a lot of parameters have been studied. From the interface tribology concept, the velocity accommodation mechanisms are discussed for different fibre orientations versus the contact surface of the glass fibre reinforced epoxy material. Results were analysed in two steps. From friction logs, Running Conditions Fretting Maps (RCFM) were first plotted in order to give an analysis of contact conditions and determine the associated material responses. The tribological degradations were then analysed. Differences between the different fibre orientations are mainly discussed on the basis of the stiffness of the anisotropic material and the velocity accommodation in the contact.  相似文献   

18.
The requirements of passive security, notably in the transport industry, impose to maximize the dissipation of the energy and to minimize the decelerations undergone by a vehicle and thus passengers due to violent shocks (crash). This paper aims at establishing efficient expected answers towards the preoccupations mainly emanating from transport industry. Currently, the behaviour laws implemented in the dynamic explicit schemes (RADIOSS, PAM-CRASH and LS-DYNA) do not integrate sufficiently the physical aspects in the material degradation, mainly the damage process, their kinetics, the variability and especially the heterogeneity of the composite materials microstructure. This paper deals with the development of a multi-scale predictive model coupling specific experimental methodologies and the micromechanical formulation of damage mechanisms in order to build constitutive laws for discontinuous fibre reinforced composites materials. The developed micromechanical modelling is based on an experimental methodology conducted over a range of strain rates from quasi static to 250 s−1. The latter has enabled identifying local probabilistic damage criterion formulated through the Weibull’s statistical integrating the strain rate effect and describing the progressive interfacial debonding under rapid loading. The developed model has been validated to predict the stiffness reduction and the overall elastic visco-damage behaviour for SMC composite material. The model simulations agree well with high speed tensile tests and confirm that the damage threshold and kinetic in the SMC are mainly strain rate sensitive.  相似文献   

19.
《Composites Part A》2007,38(3):710-718
The mechanical recycling of short fibre reinforced thermoplastics by granulation and subsequent injection moulding allows for recovery of both post consumer waste and in-plant recycled material in many industrial sectors. Parts made of these materials are often subjected to cyclic loads and therefore need to be designed against fatigue. The fatigue behaviour of reprocessed glass fibre reinforced polyamide 6,6 has been studied, using standard injection moulded specimens containing different percentages of recycled material. The effect of reprocessing of clean materials is mainly represented by fibre shortening in the injection moulding process and consequent degradation of the load bearing capacity of material. The relationship between the fatigue strength and the fibre length distribution has been discussed.  相似文献   

20.
This paper established a macroscopic constitutive model to describe the nonlinear stress–strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress–strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress–strain curves predicted by this model showed reasonable agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号