首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The guanine nucleotide exchange factor Sos mediates the coupling of receptor tyrosine kinases to Ras activation. To investigate the mechanisms that control Sos activity, we have analyzed the contribution of various domains to its catalytic activity. Using human Sos1 (hSos1) truncation mutants, we show that Sos proteins lacking either the amino or the carboxyl terminus domain, or both, display a guanine nucleotide exchange activity that is significantly higher compared with that of the full-length protein. These results demonstrate that both the amino and the carboxyl terminus domains of Sos are involved in the negative regulation of its catalytic activity. Furthermore, in vitro Ras binding experiments suggest that the amino and carboxyl terminus domains exert negative allosteric control on the interaction of the Sos catalytic domain with Ras. The guanine nucleotide exchange activity of hSos1 was not augmented by growth factor stimulation, indicating that Sos activity is constitutively maintained in a downregulated state. Deletion of both the amino and the carboxyl terminus domains was sufficient to activate the transforming potential of Sos. These findings suggest a novel negative regulatory role for the amino terminus domain of Sos and indicate a cooperation between the amino and the carboxyl terminus domains in the regulation of Sos activity.  相似文献   

2.
A fragment consisting of residues 584-1071 of the mouse Son-of-sevenless 1 (mSos1) protein was found to be sufficient for stimulation of the guanine nucleotide exchange of Ras in vitro, which defines the CDC25 homology (CDC25H) domain of mSos1. Furthermore, we found that the CDC25H-domain fragment activated the extracellular signal-regulated protein kinases (ERKs), and was mainly membrane localized, when expressed in unstimulated human embryonic kidney 293 cells. Then, we examined the roles of other mSos1 domains in autoinhibition of the CDC25H-domain functions in unstimulated cellular environments. First, longer fragments that have the CDC25H domain and the following proline-rich Grb2-binding domain exhibited negligible membrane localization, and accordingly much lower ERK-activation activities, under serum-starved conditions. On the other hand, the preceding Pleckstrin-homology (PH) domain affects neither the ERK-activation activity nor the membrane-localization activity of the CDC25H domain. By contrast, the cells expressing a fragment containing the Dbl homology (DH) domain in addition to the PH and CDC25H domains exhibited remarkably low ERK activities under serum-starved conditions. This autoinhibitory effect of the DH domain on the CDC25H-domain function was shown to be relieved when cells were stimulated with epidermal growth factor. The DH-domain extension affected neither the in vitro guanine nucleotide exchange activity nor the membrane-localization activity of the CDC25H domain. Therefore, one of the roles of the DH domain is to exert an autoinhibition over the CDC25H-domain function on the cell membrane, in the absence, but not in the presence, of extracellular stimuli.  相似文献   

3.
CDC25Mm is a mouse guanine nucleotide exchange factor specific for Ras, exclusively expressed in the brain. We used a reporter gene containing a Ras-responsive fos-promoter in order to gain information on the role played by this exchange factor in signal transduction. Transient expression of CDC25Mm in CHO cells activates Ras. Moreover serum, but not insulin, can upregulate the response mediated by CDC25Mm and this modulation requires that the CDC25Mm maintains its N-terminal region. NIH3T3 fibroblasts, stably overexpressing this exchange factor, show a partially transformed phenotype, suggesting that the Ras-dependent pathway is constitutively active. In these cells serum and lysophosphatidic acid (LPA) stimulate Ras activity above the basal level while PDGF does not. Both serum and LPA-induced Ras activations in CDC25Mm overexpressing cells can be completely inhibited by pertussis toxin. Moreover, these responses are strongly reduced by coexpression of a truncated version of CDC25Mm lacking the C-terminal catalytic portion. This construct behaves in a dominant negative manner suggesting that it may compete with CDC25Mm by sequestering in an unproductive way signalling components activated by these factors. The data presented indicate that CDC25Mm does not participate in connecting tyrosine kinase receptors with Ras, while it could mediate Ras activation induced by pertussis toxin sensitive Gi-coupled receptors.  相似文献   

4.
Human cells contain four homologous Ras proteins, but it is unknown whether these homologues have different biological functions. As a first step in determining if Ras homologues might participate in distinct signaling cascades, we assessed whether a given Ras guanine nucleotide exchange factor could selectively activate a single Ras homologue in vivo. We found that Ras-GRF/Cdc25Mm activates Ha-Ras, but does not activate N-Ras or K-Ras 4B, protein in vivo. Moreover, our results suggested that residues within the C-terminal hypervariable domains of Ras proteins may dictate, at least in part, the specificity of Ras-GRF/CDC25Mm for Ha-Ras protein. Our studies represent the first biochemical evidence that a Ras GEF can selectively activate a single Ras homologue in vivo. Selective activation of a single Ras homologue by Ras-GRF/Cdc25Mm or other Ras guanine nucleotide exchange factors could potentially enable each of the Ras homologues to participate in different signal transduction pathways.  相似文献   

5.
Guanine nucleotide exchange factors (GEFs) activate Ras proteins by stimulating the exchange of GTP for GDP in a multistep mechanism which involves binary and ternary complexes between Ras, guanine nucleotide, and GEF. We present fluorescence measurements to define the kinetic constants that characterize the interactions between Ras, GEF, and nucleotides, similar to the characterization of the action of RCC1 on Ran [Klebe et al. (1995) Biochemistry 34, 12543-12552]. The dissociation constant for the binary complex between nucleotide-free Ras and the catalytic domain of mouse Cdc25, Cdc25(Mm285), was 4.6 nM, i.e., a 500-fold lower affinity than the Ras.GDP interaction. The affinities defining the ternary complex Ras. nucleotide.Cdc25(Mm285) are several orders of magnitude lower. The maximum acceleration by Cdc25(Mm285) of the GDP dissociation from Ras was more than 10(5)-fold. Kinetic measurements of the association of nucleotide to nucleotide-free Ras and to the binary complex Ras. Cdc25(Mm285) show that these reactions are practically identical: a fast binding step is followed by a reaction of the first order which becomes rate limiting at high nucleotide concentrations. The second reaction is thought to be a conformational change from a low- to a high-affinity nucleotide binding conformation in Ras. Taking into consideration all experimental data, the reverse isomerization reaction from a high- to a low-affinity binding conformation in the ternary complex Ras. GDP.Cdc25(Mm285) is postulated to be the rate-limiting step of the GEF-catalyzed exchange. Furthermore, we demonstrate that the disruption of the Mg2+-binding site is not the only factor in the mechanism of GEF-catalyzed nucleotide exchange on Ras.  相似文献   

6.
B cell antigen receptor (BCR)-mediated signal transduction controls B cell proliferation and differentiation. The BCR activates Ras, presumably by the formation of a Shc-Grb2 adaptor complex, which recruits the Grb2-associated guanine nucleotide exchange factor Sos to the plasma membrane. In order to reveal additional BCR-induced signaling events involving the Grb2 adaptor, we undertook the isolation of Grb2-binding proteins. Using the yeast two-hybrid system and bacterial fusion proteins, Vav and C3G were identified as Grb2 binders. Vav is a putative nucleotide exchange factor and a target for BCR-induced tyrosine phosphorylation. C3G exerts nucleotide exchange activity on the Ras-related Rap1 protein. While Sos binds to both Grb2 Src homology-3 (SH3) domains, Vav was found to associate selectively with the carboxyl-terminal SH3 domain, while C3G bound selectively to the amino-terminal SH3 domain of bacterially expressed Grb2. Despite the association of Vav with Grb2 in vitro, we could not demonstrate an interaction between endogenous Vav and Grb2 molecules in primary B cells. Instead, Vav was found to inducibly associate with the Grb2-related adaptor protein Crk upon BCR stimulation. C3G did not bind to either Grb2, Shc, or Crk in vivo. Instead, C3G was found in association with the Crk-L adaptor, both before and after BCR stimulation. We show that Crk-L also participates in BCR signaling, since it inducibly interacts with tyrosine-phosphorylated Cbl. We conclude that, in addition to Sos, Vav and C3G play a role in BCR-mediated signal transduction. These guanine nucleotide exchange factors selectively associate with Grb2, Crk, and Crk-L, respectively, which may serve to direct them to different target molecules. Since Cbl binds to Grb2, Crk, as well as Crk-L, we hypothesize that Cbl may affect the function of all three exchangers.  相似文献   

7.
Hepatocyte growth factor/scatter factor (HGF/SF) induces mitogenesis and cell dissociation upon binding to the protein-tyrosine kinase receptor encoded by the MET proto-oncogene (p190MET). The signal transduction pathways downstream from the receptor activation are largely unknown. We show that HGF/SF activates Ras protein. HGF/SF stimulation of metabolically labeled A549 cells raised the amount of Ras-bound radiolabeled guanine nucleotides by over 5-fold. Furthermore, following HGF/SF stimulation of these cells, 50% of Ras was in the GTP-bound active state. The uptake by Ras of radiolabeled GTP was also increased by 5-fold following HGF/SF stimulation in digitonin-permeabilized A549 cells. Moreover, HGF/SF treatment of A549 cells leads to stimulation of the cytosolic Ras-guanine nucleotide exchange activity, measured as accelerated release of [3H]GDP from purified recombinant Ras protein in vitro, in a dose- and time-dependent manner. Likewise, treatment with the protein-tyrosine kinase inhibitor 3-(1',4'-dihydroxytetralyl)methylene-2-oxindole of GTL-16 cells (featuring a p190MET receptor constitutively active) significantly decreased the cytosolic Ras-guanine nucleotide exchange activity. These data demonstrate that HGF/SF activates Ras protein by shifting the equilibrium toward the GTP-bound state and increases the uptake of guanine nucleotides by Ras, through mechanism(s) including the activation of a Ras-guanine nucleotide exchanger.  相似文献   

8.
We have explored the role of the distal switch II region of the yeast RAS2 protein in determining the response to the nucleotide exchange factor CDC25. We first constructed yeast tester strains in which the deletion of the chromosomal CDC25, RAS1, and RAS2 genes, in combination with the chromosomal suppressor CRI4, resulted in detectable phenotypes in vivo and in vitro. Phenotypes included impaired growth at 37 degrees C, defective glucose-induced cyclic AMP signaling, and low adenylyl cyclase activity of membrane preparations. Tester strains were subsequently used for the reintroduction of various combinations of wild-type and mutated RAS2 and CDC25 genes by genetic techniques, as well as for in vitro reconstitution assays with the corresponding proteins. CDC25 restored both growth and glucose-induced cyclic AMP signaling in the presence, but not in the absence of wild-type RAS2. A gene encoding a RAS2 protein with a mutationally altered switch II region was expressed but was ineffective in reintegrating exchange factor-dependent responses in vivo. Wild-type, but not mutagenically altered, RAS2 proteins were stimulated by exchange factors in vitro. We conclude that the conserved distal switch II region is required for CDC25-dependent activation of RAS.  相似文献   

9.
We have characterized an SH3-SH2-SH3 linker protein that is prominently expressed in lymphoid tissues. This protein has 58% sequence identity to Grb2. An identical protein called Grap has been found in hematopoietic cells. In Jurkat cells, T cell receptor activation leads to the association of Grap with phosphoproteins p36/38 and, to a lesser degree, Shc. This interaction is mediated by the Grap SH2 domain, which has similar binding specificity to the Grb2 SH2 domain. Grap also associates via its SH3 domains with Sos, the Ras guanine nucleotide exchange factor; with dynamin, a GTPase involved in membrane protein trafficking; and with Sam68, a nuclear RNA-binding protein that serves as a substrate of Src kinases during mitosis. T cell activation effects an increase in Grap association with p36/38, Shc, Sos, and dynamin. Sam68 binding is constitutive. Phospholipase C-gamma1 and Fyn are also found in activated Grap signaling complexes, although these interactions may not be direct. We conclude that Grap is a prominent component of lymphocyte receptor signaling. Based on the known functions of bound effector molecules, Grap-mediated responses to antigen challenge may include endocytosis of the T cell receptor, cellular proliferation, and regulated entry into the cell cycle.  相似文献   

10.
Sec12p is the guanine nucleotide exchange factor of Sar1 GTPase and functions at the very upstream in the vesicle budding reactions from the endoplasmic reticulum (ER). We previously identified three yeast loci, RST1, RST2, and RST3, whose mutations suppressed the temperature-sensitive growth of the sec12-4 mutant (Nakano, A. (1996) J. Biochem. (Tokyo) 120, 642-646). In the present study, we cloned the wild-type RST2 gene by complementation of the cold-sensitive phenotype of the rst2-1 mutant. RST2 turned out to be identical to HRR25, a gene encoding a dual-specificity casein kinase I in yeast. The rst2-1 mutation, which is now renamed hrr25-2, was due to the T176I amino acid replacement in the kinase domain. This mutation remedied not only the temperature-sensitive growth but also the defect of ER-to-Golgi protein transport of sec12. Immunoprecipitation of the hemagglutinin-tagged Hrr25-2 protein and a subsequent protein kinase assay showed that the kinase activity of the mutant protein was markedly reduced. The overproduction of another kinase-minus mutant of Hrr25p (Hrr25p K38A) slightly suppressed the growth defect of sec12-4 as well. These observations suggest that the reduction of the kinase activity in the mutant protein is important for the suppression of sec12. We propose that Hrr25p negatively regulates the vesicle budding from the ER.  相似文献   

11.
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.  相似文献   

12.
The Rho-related small GTPases are critical elements involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. The Dbl-like guanine nucleotide exchange factors (GEF) have been implicated in direct activation of these GTPases. Here we have identified a new member of the Dbl family, GEF-H1, by screening a human HeLa cell cDNA library. GEF-H1 encodes a 100-kDa protein containing the conserved structural array of a Dbl homology domain in tandem with a pleckstrin homology domain and is most closely related to the lfc oncogene, but additionally it contains a unique coiled-coil domain at the carboxyl terminus. Biochemical analysis reveals that GEF-H1 is capable of stimulating guanine nucleotide exchange of Rac and Rho but is inactive toward Cdc42, TC10, or Ras. Moreover, GEF-H1 binds to Rac and Rho proteins in both the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound states without detectable affinity for Cdc42 or Ras. Immunofluorescence reveals that GEF-H1 colocalizes with microtubules through the carboxyl-terminal coiled-coil domain. Overexpression of GEF-H1 in COS-7 cells results in induction of membrane ruffles. These results suggest that GEF-H1 may have a direct role in activation of Rac and/or Rho and in bringing the activated GTPase to specific target sites such as microtubules.  相似文献   

13.
Cellular levels of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are rapidly elevated in response to activation of growth factor receptor tyrosine kinases. This polyphosphoinositide binds the pleckstrin homology (PH) domain of GRP1, a protein that also contains 200 residues with high sequence similarity to a segment of the yeast Sec7 protein that functions as an ADP ribosylation exchange factor (ARF) (Klarlund, J., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997) Science 275, 1927-1930). Here we show that dioctanoyl PtdIns(3,4,5)P3 binds the PH domain of GRP1 with a Kd = 0.5 microM, an affinity 2 orders of magnitude greater than dioctanoyl-PtdIns(4,5)P2. Further, the Sec7 domain of GRP1 is found to catalyze guanine nucleotide exchange of ARF1 and -5 but not ARF6. Importantly, PtdIns(3,4,5)P3, but not PtdIns(4,5)P2, markedly enhances the ARF exchange activity of GRP1 in a reaction mixture containing dimyristoylphosphatidylcholine micelles, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and a low concentration of sodium cholate. PtdIns(3,4,5)P3-mediated ARF nucleotide exchange through GRP1 is selectively blocked by 100 microM inositol 1,3,4,5-tetrakisphosphate, which also binds the PH domain of GRP1. Taken together, these data are consistent with the hypothesis that selective recruitment of GRP1 to PtdIns(3,4,5)P3 in membranes activates ARF1 and -5, known regulators of intracellular membrane trafficking.  相似文献   

14.
In fission yeast, Scd1/Ral1 is a putative guanine nucleotide exchange factor for Cdc42sp and also acts as a Ras1 effector necessary for the regulation of cytoskeleton organization. In this study, we have characterized a protein, Moe1, that binds directly to Scd1. A moe1 null (Delta) mutant exhibits numerous phenotypes indicative of abnormal microtubule functioning, including an abnormality in the spindle. moe1Delta mutants are resistant to microtubule destabilizing agents; moreover, moe1Delta rescued the growth defects of tubulin mutants containing unstable microtubules. These results suggest that Moe1 induces instability in microtubules. Biochemical and subcellular localization studies suggest that Moe1 and Scd1 colocalize in the nucleus. Furthermore, loss of function in Scd1 or Ras1 also induced abnormality in the spindle and is synthetically lethal with moe1Delta producing cells that lack a detectable spindle. These data demonstrate that Moe1 is a component of the Ras1 pathway necessary for proper spindle formation in the nucleus. Human and nematode Moe1 both can substitute for yeast Moe1, indicating that the function of Moe1 in spindle formation has been conserved substantially during evolution.  相似文献   

15.
Mitogenic G protein-coupled receptors, such as those for lysophosphatidic acid (LPA) and thrombin, activate the Ras/MAP kinase pathway via pertussis toxin (PTX)-sensitive Gi, tyrosine kinase activity and recruitment of Grb2, which targets guanine nucleotide exchange activity to Ras. Little is known about the tyrosine phosphorylations involved, although Src activation and Shc phosphorylation are thought to be critical. We find that agonist-induced Src activation in Rat-1 cells is not mediated by Gi and shows no correlation with Ras/MAP kinase activation. Furthermore, LPA-induced tyrosine phosphorylation of Shc is PTX-insensitive and Ca2+-dependent in COS cells, but undetectable in Rat-1 cells. Expression of dominant-negative Src or Shc does not affect MAP kinase activation by LPA. Thus, Gi-mediated Ras/MAP kinase activation in fibroblasts and COS cells involves neither Src nor Shc. Instead, we detect a 100 kDa tyrosine-phosphorylated protein (p100) that binds to the C-terminal SH3 domain of Grb2 in a strictly Gi- and agonist-dependent manner. Tyrosine kinase inhibitors and wortmannin, a phosphatidylinositol (PI) 3-kinase inhibitor, prevent p100-Grb2 complex formation and MAP kinase activation by LPA. Our results suggest that the p100-Grb2 complex, together with an upstream non-Src tyrosine kinase and PI 3-kinase, couples Gi to Ras/MAP kinase activation, while Src and Shc act in a different pathway.  相似文献   

16.
Monoglucosylation of low molecular mass GTPases is an important post-translational modification by which microbes interfere with eukaryotic cell signaling. Ha-Ras is monoglucosylated at effector domain amino acid threonine 35 by Clostridium sordellii lethal toxin, resulting in a blockade of the downstream mitogen-activated protein kinase cascade. To understand the molecular consequences of this modification, effects of glucosylation on each step of the GTPase cycle of Ras were analyzed. Whereas nucleotide binding was not significantly altered, intrinsic GTPase activity was markedly decreased, and GTPase stimulation by the GTPase-activating protein p120(GAP) and neurofibromin NF-1 was completely blocked, caused by failure to bind to glucosylated Ras. Guanine nucleotide exchange factor (Cdc25)-catalyzed GTP loading was decreased, but not completely inhibited. A dominant-negative property of modified Ras to sequester exchange factor was not detectable. However, the crucial step in downstream signaling, Ras-effector coupling, was completely blocked. The Kd for the interaction between Ras.GTP and the Ras-binding domain of Raf was 15 nM, whereas glucosylation increased the Kd to >1 mM. Because the affinity of Ras.GDP for Raf (Kd = 22 microM) is too low to allow functional interaction, a glucose moiety at threonine 35 of Ras seems to block completely the interaction with Raf. The net effect of lethal toxin-catalyzed glucosylation of Ras is the complete blockade of Ras downstream signaling.  相似文献   

17.
As part of a cDNA library screen for clones that induce transformation of NIH 3T3 fibroblasts, we have isolated a cDNA encoding the murine homolog of the guanine nucleotide exchange factor RasGRP. A point mutation predicted to prevent interaction with Ras abolished the ability of murine RasGRP (mRasGRP) to transform fibroblasts and to activate mitogen-activated protein kinases (MAP kinases). MAP kinase activation via mRasGRP was enhanced by coexpression of H-, K-, and N-Ras and was partially suppressed by coexpression of dominant negative forms of H- and K-Ras. The C terminus of mRasGRP contains a pair of EF hands and a C1 domain which is very similar to the phorbol ester- and diacylglycerol-binding C1 domains of protein kinase Cs. The EF hands could be deleted without affecting the ability of mRasGRP to transform NIH 3T3 cells. In contrast, deletion of the C1 domain or an adjacent cluster of basic amino acids eliminated the transforming activity of mRasGRP. Transformation and MAP kinase activation via mRasGRP were restored if the deleted C1 domain was replaced either by a membrane-localizing prenylation signal or by a diacylglycerol- and phorbol ester-binding C1 domain of protein kinase C. The transforming activity of mRasGRP could be regulated by phorbol ester when serum concentrations were low, and this effect of phorbol ester was dependent on the C1 domain of mRasGRP. The C1 domain could also confer phorbol myristate acetate-regulated transforming activity on a prenylation-defective mutant of K-Ras. The C1 domain mediated the translocation of mRasGRP to cell membranes in response to either phorbol ester or serum stimulation. These results suggest that the primary mechanism of activation of mRasGRP in fibroblasts is through its recruitment to diacylglycerol-enriched membranes. mRasGRP is expressed in lymphoid tissues and the brain, as well as in some lymphoid cell lines. In these cells, RasGRP has the potential to serve as a direct link between receptors which stimulate diacylglycerol-generating phospholipase Cs and the activation of Ras.  相似文献   

18.
The Ras-related GTPases are small, 20- to 25-kDa proteins which cycle between an inactive GDP-bound form and an active GTP-bound state. The Ras superfamily includes the Ras, Rho, Ran, Arf, and Rab/YPT1 families, each of which controls distinct cellular functions. The crystal structures of Ras, Rac, Arf, and Ran reveal a nearly superimposible structure surrounding the GTP-binding pocket, and it is generally presumed that the Rab/YPT1 family shares this core structure. The Ras, Rac, Ran, Arf, and Rab/YPT1 families are activated by interaction with family-specific guanine nucleotide exchange factors (GEFs). The structural determinants of GTPases required for interaction with family-specific GEFs have begun to emerge. We sought to determine the sites on YPT1 which interact with GEFs. We found that mutations of YPT1 at position 42, 43, or 49 (effector loop; switch I), position 69, 71, 73, or 75 (switch II), and position 107, 109, or 115 (alpha-helix 3-loop 7 [alpha3-L7]) are intragenic suppressors of dominant interfering YPT1 mutant N22 (YPT1-N22), suggesting these mutations prevent YPT1-N22 from binding to and sequestering an endogenous GEF. Mutations at these positions prevent interaction with the DSS4 GEF in vitro. Mutations in the switch II and alpha3-L7 regions do not prevent downstream signaling in yeast when combined with a GTPase-defective (activating) mutation. Together, these results show that the YPT1 GTPase interacts with GEFs in a manner reminiscent of that for Ras and Arf in that these GTPases use divergent sequences corresponding to the switch I and II regions and alpha3-L7 of Ras to interact with family-specific GEFs. This finding suggests that GTPases of the Ras superfamily each may share common features of GEF-mediated guanine nucleotide exchange even though the GEFs for each of the Ras subfamilies appear evolutionarily unrelated.  相似文献   

19.
To elucidate the molecular basis for inhibition of B cell proliferation and differentiation by the Fc receptor for IgG (Fc(gamma)RII), we compared the signaling events in B cells stimulated by cross-linking surface Ig alone (positive signaling), or by co-cross-linking surface Ig and Fc(gamma)RII (negative signaling). Both modes of stimulation induced tyrosine kinase activation. Positive signaling induced activation of Ras, Raf-1 kinase, and mitogen-activated protein kinase; these events were significantly attenuated during negative signaling. Since Ras is activated by SOS and Vav, two known guanine nucleotide exchange factors, activation events associated with these molecules using the two different stimuli were examined. Results of these experiments indicated that tyrosine phosphorylation of Vav did not change upon co-cross-linking. In contrast, the association of Shc and Grb2 was abrogated under negative and induced under positive signaling conditions. Concomitantly, Shc was observed to associate with a tyrosine-phosphorylated 145-kDa protein, previously identified as Src homology 2-containing inositol phosphatase, only under conditions of negative signaling. Based on these results, we hypothesize that negative signaling via the Fc(gamma)RII in B cells is at least partly the result of a block in Ras activation, and that SOS, but not Vav, is the major guanine nucleotide exchange factor in B cells for Ras activation.  相似文献   

20.
There are several recently reported examples of inositol phospholipids binding to pleckstrin homology (PH) domains of proteins. The PH domain of SOS, a guanine nucleotide exchange factor for Ras, binds to phosphatidylinositol 4,5 bisphosphate (PtdIns4,5P2). We found that binding of PtdIns4,5P2 to 6-his-tagged recombinant mSOS in vitro inhibits the ability of SOS to catalyze the association of GTP on p21RAS. This inhibition was specific for PtdIns4,5P2: a number of other phosphatidylinositols and phosphatidylserine failed to inhibit Ras GTP-association. We confirmed that the specificity of binding of PtdIns's to recombinant GST-SOS-PH domain is the same as the specificity of PtdIns's for inhibition of SOS activity: namely, that only PtdIns4,5P2 binds significantly to the SOS-PH domain. In addition, the inhibition of Ras GTP-binding is not blocked by excess free inositols suggesting that SOS binds to PtdIns4,5P2 with higher affinity than it binds to free inositols. Addition of SOS-PH domain protein prevented the inhibition of SOS by PtdIns4,5P2 as did addition of the high affinity PtdIns4,5P2-binding drug neomycin. This confirmed that SOS inhibition is mediated by the SOS-PH domain binding to the inositol moiety of PtdIns4,5P2. Binding of Grb2 to SOS did not prevent the inhibition of SOS by PtdIns4,5P2 suggesting that there must be another mechanism for regulating this inhibition. These findings show that the phospholipid PtdIns4,5P2 can suppress the activity of an enzyme involved in signal transduction and suggest that this inhibitory effect must be relieved when SOS is activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号