首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将氢化丁腈橡胶(HNBR)与石墨烯二维纳米材料(GO)共混以提高其导电和导热性能,采用乳液一步法还原制备了HNBR/还原氧化石墨烯(RGO)纳米复合材料。结果表明,丁腈橡胶(NBR)乳液中分子链的碳碳双键和GO经水合肼/过氧化氢/硫酸铜催化体系产生的活性中心二酰亚胺被同时进行加氢和还原,这在改善HNBR性能的同时简化了RGO纳米复合材料的制备工艺,制备过程没有毒性大的有机溶剂。HNBR/RGO纳米复合材料的氢化度为61%,I_D/I_G为1. 36,说明NBR/GO中分子链双键和GO经一步法得到还原。采用一步法可将RGO在HNBR基质中均匀分散。HNBR/RGO纳米复合材料的力学性能和热性能因RGO的存在得以大幅度改善。  相似文献   

2.
采用原位聚合法制备聚苯胺(PANI)、PANI/氧化石墨烯(GO)复合材料和PANI/还原氧化石墨烯(RGO)复合材料。利用四探针测试仪、X射线衍射(XRD)仪、傅立叶变换红外光谱(FTIR)仪、热重(TG)分析仪和扫描电子显微镜(SEM)等对PANI及PANI/GO复合材料和PANI/RGO复合材料进行表征。电导率测试结果表明,当加入GO质量分数为50%时,先还原后聚合法制得PANI/RGO复合材料的导电率可达9.916 S/cm,RGO能有效提高复合材料的导电性;XRD和FTIR分析结果表明,GO和RGO都能较好分散在PANI中;TG分析结果表明,将GO还原为RGO后在小于250℃时能有效提高复合材料的热稳定性。通过原位聚合法能将GO和RGO较好分散在PANI中,形成较好的插层型复合材料,尤其是先还原后聚合法制得的PANI/RGO复合材料具有较好的导电性和热稳定性。  相似文献   

3.
将还原氧化石墨烯(RGO)作为原料在热塑性聚氨酯(TPU)合成过程中直接加入进行原位聚合制备RGO/TPU复合材料。在4,4’-亚甲基双异氰酸酯(MDI)与聚丙二醇-2000(PPG-2000)预反应完成后,加入RGO反应30分钟,再加入1,4-丁二醇(BDO)进行扩链反应得到RGO/TPU复合材料。并利用FTIR、XRD、SEM、TGA等方法对原位合成的复合材料进行表征,并对其热稳定性、导热性能、力学性能、体积电阻率进行了测试。结果表明:原位聚合的RGO/TPU中的RGO在含量在0.3-1.0wt%时分散均匀,RGO尺寸在2μm左右,当RGO含量继续增加时,将出现团聚现象,RGO尺寸可达到5μm。复合材料的热分解温度区间为355-370℃。当RGO含量在1.0-1.5wt%时,其导热系数与热扩散系数达到0.2242 W/mK和0.50 mm2/s,对比纯TPU提高170%;拉伸强度提高41%以上;体积电阻率降低1000倍。  相似文献   

4.
采用Hummers法制备氧化石墨烯(GO),并在其表面原位聚合聚对苯二胺(PPDA),再经水合肼还原得到还原氧化石墨烯聚对苯二胺(RGO-PPDA)复合体,并用其改性热塑性聚氨酯(TPU)薄膜,最终通过溶液涂膜制得TPU/RGO-PPDA复合薄膜。通过傅里叶变换红外光谱仪、X射线衍射仪、扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪对RGO-PPDA纳米复合体进行表征,并利用氧气透过仪、高阻计对TPU/RGO-PPDA复合薄膜的性能进行测试,并与TPU/GO-PPDA复合薄膜性能进行对比。结果表明,GO上原位聚合PPDA,显著改善了GO的亲油性,这有利于GO在氮氮二甲基甲酰胺(DMF)中的分散,进而有利于实现在TPU基体中的均匀分散;当RGO-PPDA含量为0.8 %(质量分数,下同)时,TPU/RGO-PPDA复合薄膜的氧气透过率降低了73.28 %,导电性能提升了8个数量级,表现出良好的阻隔抗静电性能。  相似文献   

5.
以氧化石墨烯(GO)和天然胶乳为主要原材料,通过冷冻干燥技术制备具有隔离结构的还原氧化石墨烯(RGO)/天然橡胶(NR)导电复合材料,对其电性能进行研究。结果表明:通过冷冻干燥法在NR基体中构筑RGO隔离结构,RGO/NR复合材料的交流电导率和介电常数随RGO体积分数的增大而增大;隔离结构大幅降低了复合材料的电逾渗阈值,并赋予复合材料优异的应变敏感特性。  相似文献   

6.
黄海涛 《精细化工》2020,37(10):2132-2137
采用超声氧化剥离法制备氧化石墨烯(GO),通过浸轧-还原法得到一种高效、简单制备还原氧化石墨烯(RGO)导电棉织物的方法。探讨了GO质量浓度、GO溶液pH、还原条件、浸轧-还原次数等因素对RGO整理棉织物表面电阻的影响,采用SEM和Raman光谱对整理棉织物进行表征。结果表明,棉织物用质量浓度2.5 g/L、pH=6的GO溶液浸轧后,再用质量浓度5.0 g/L的保险粉于90℃对浸轧GO烘干后的棉织物还原30 min,得到的整理棉织物表面电阻降低至2220?,经过4次和8次浸轧-还原后棉织物表面电阻可分别降低至0.22和0.13 k?。通过SEM观察整理棉织物发现,RGO能在棉纤维表面形成薄膜并包覆纤维,且随着浸轧-还原次数的增加,棉织物表面沉积的RGO逐渐增多。Raman光谱较好地证实了GO在棉织物表面的沉积,且GO较充分地还原成RGO。通过对整理棉织物的耐洗性能测试发现,整理织物的导电耐久性较好。  相似文献   

7.
采用水热还原法制备了不同还原程度的还原氧化石墨烯(RGO),并将其添加到水泥浆体中,制得石墨烯增强水泥基复合材料。采用傅里叶变换红外光谱(FT-IR)、力学性能测试仪、扫描电子显微镜(SEM)对氧化石墨烯(GO)还原程度及水泥基复合材料的力学性能和微观结构进行测试。结果表明,在120℃水热条件下,控制不同还原时间可以得到不同还原程度的RGO;随着GO还原程度的提高,复合材料力学强度不断增加;RGO可使水泥更加密实,降低了水泥浆体的孔隙率,对水泥基复合材料起到增强增韧的作用。  相似文献   

8.
用乙二胺(EDA)和氢氧化钠对涤纶织物进行改性,得到氨基化改性涤纶。将改性涤纶浸渍氧化石墨烯(GO)溶液,涤纶表面的GO还原成还原氧化石墨烯(RGO)后得到具有导电性能的涤纶织物。采用SEM和Raman光谱对导电涤纶织物进行表征,并对其耐洗和耐摩擦性能进行了测试。结果表明,涤纶织物经150 mL EDA/L浴液和50 g/L氢氧化钠改性后对GO的吸附能力增强,织物导电性增加;改性涤纶的最佳导电整理工艺条件为:GO溶液质量浓度为2 g/L,pH=6,6 g/L保险粉在95℃还原60 min。在该条件下,织物上GO能够被较充分还原,改性涤纶的表面电阻值为14.575kΩ。SEM结果表明,未经改性的涤纶织物表面光滑,经导电整理后织物表面覆盖一层石墨烯薄膜;Raman光谱证实涤纶织物表面沉积了RGO,且织物上的GO被较充分还原。  相似文献   

9.
以改进Hummers法制备的氧化石墨烯(GO)为原料,通过热解还原剥离得到还原氧化石墨烯(RGO),并考察热解工艺对RGO结构和电性能的影响。研究表明,随着热解温度的升高,RGO的氧含量降低,缺陷密度下降,但过高的热解温度会造成RGO结构的二次塌陷并降低比表面积。通过测试不同热解温度下制备的RGO样品的电导率,发现RGO的缺陷结构和氧含量是影响其导电性的主要因素。在600℃热解还原制备的RGO-600粉体热处理温度适中,片层剥离度高,比表面积大,二次结构坍缩少,导电性能优越,其电导率可达344.8 S/cm。RGO与碳纳米管、导电炭黑复合的石墨烯复合导电浆料用于锂离子电池材料中,能明显提升电极材料的电子传导能力。此方法实现了在较低的热解温度条件下,剥离还原制备高导电性的石墨烯材料。  相似文献   

10.
《应用化工》2022,(5):806-809
通过原位复合的方法,在石墨烯片层间掺杂纳米银颗粒,制备出石墨烯/银纳米杂化材料(RGO/Ag)。利用紫外吸收光谱、傅里叶红外光谱、透射电子显微镜(TEM)、XRD、拉曼光谱等对氧化石墨烯(GO)、还原氧化石墨烯(RGO)和石墨烯/银纳米杂化材料(RGO/Ag)进行表征。发现复合材料中的银对石墨烯/银材料有拉曼增强作用,结合TEM对这种增强作用进行研究,发现银颗粒的团聚对这种增强作用有减弱作用。  相似文献   

11.
《应用化工》2016,(5):806-809
通过原位复合的方法,在石墨烯片层间掺杂纳米银颗粒,制备出石墨烯/银纳米杂化材料(RGO/Ag)。利用紫外吸收光谱、傅里叶红外光谱、透射电子显微镜(TEM)、XRD、拉曼光谱等对氧化石墨烯(GO)、还原氧化石墨烯(RGO)和石墨烯/银纳米杂化材料(RGO/Ag)进行表征。发现复合材料中的银对石墨烯/银材料有拉曼增强作用,结合TEM对这种增强作用进行研究,发现银颗粒的团聚对这种增强作用有减弱作用。  相似文献   

12.
利用还原氧化石墨烯(RGO)改善离子液体溶剂纤维素(CE)的综合性能,将氧化石墨烯(GO)分散在去离子水中,通过热还原法得到RGO,RGO与离子液体(IL)混合后采用减压蒸馏法去除水分,得到均匀分散的RGO/IL溶液,以RGO/IL溶液为纤维素溶剂,利用RGO改善CE薄膜的各项性能,用扫描电子显微镜和XRD表征了材料的形貌和结构。结果表明,RGO质量分数为1%时,RGO/CE复合薄膜的拉伸强度和模量分别为122MPa和6.77GPa,较纯CE薄膜分别提高了188%和320%。RGO/CE复合薄膜的电导率为4.7×10~(–6)S/m,较纯CE薄膜(2.5×10~(–14) S/m)提高了9个数量级,由于RGO与CE分子链间新的氢键的形成以及RGO优异的二维结构,RGO可以显著提高复合薄膜的热稳定性、力学性能和导电能力。  相似文献   

13.
采用原位化学法合成不同质量比的SnO_2/还原氧化石墨烯(RGO)纳米复合材料,通过溶胶-凝胶法制得SnO_2/RGO纳米复合薄膜光阳极。经N3染料浸渍,与Pt对电极,I~-/I_3~-电解质组装成染料敏化太阳能电池(DSSC)。对SnO_2/RGO纳米复合薄膜光阳极结构进行分析,通过伏安特性曲线分析了电池的光电性能。结果表明:石墨烯有利于提高SnO_2基DSSC的光电性能。当GO与SnCl_2·2H_2O的质量比为0.20时,电池的性能最优,短路电流密度(J(sc))和开路电压(U_(oc))分别达到15.56 mA/cm~2和0.56 V,光电转换效率为4.58%。并研究了SnO_2/RGO复合材料对光阳极的电子传输和光电转换效率的影响机制。  相似文献   

14.
研究了氧化石墨烯(GO)负载Co-Ni催化剂原位催化聚丙烯(PP)进行三维石墨烯碳纳米杂化材料的合成,同时考察材料作为超级电容器电极的电化学应用。将乙酸钴和乙酸镍按比例加入GO水溶液中,利用聚醚胺400(D-400)将二者还原为氢氧化物并自组装负载在GO表面,制备出GO负载Co-Ni催化剂(GO/Ni-Co)。将GO/Ni-Co熔融共混到PP中,在氮气保护下裂解碳化共混得到石墨烯基碳纳米杂化材料。采用SEM、TEM、XRD和Raman等对其形貌结构进行表征。结果表明:利用该方法可成功制备一种三维石墨烯碳纳米杂化材料(RGO/C)。将所制备的RGO/C应用于超级电容器,在扫描速率为2m V/s时,最大比电容达到595F/g,并且具有良好的循环稳定性。  相似文献   

15.
工业生产中主要通过化学方法将GO(氧化石墨烯)还原,制备RGO(还原氧化石墨烯)。文中将GO及RGO应用于PHP(脉动热管),分析比较它们的结构及热物性,及其对PHP启动和传热的影响。采用闭式3回路铜制PHP,垂直强制风冷散热,蒸发段电加热功率范围10—105 W。PHP充液率约50%,GO及RGO纳米流体质量分数均为0.05%。研究表明:在水中添加GO及RGO有助于改善PHP的启动及传热。加热功率为20 W时,GO及RGO纳米流体的强化作用率分别为37.4%和16.7%。随着加热功率的增加,强化作用有所下降。对于RGO纳米流体,当加热功率为105 W时,强化作用基本消失。与RGO相比,GO纳米流体的强化作用更大。主要归因于GO纳米流体湿润性、分散性及稳定性较好,表面张力及黏度较小。  相似文献   

16.
利用超声波的分散、粉碎、活化、引发等多重作用以及吡咯单体与石墨烯的π-π相互作用,在实现石墨烯均匀分散的同时,使吡咯单体在石墨烯表面进行原位聚合反应,制备出聚吡咯/石墨烯(PPy/RGO)纳米复合材料。运用扫描电子显微镜(SEM)、红外光谱(FTIR)、X射线光电子能谱(XPS)等测试手段对PPy/RGO纳米复合材料的表面特性、化学组成及结构等进行了表征。在此基础上,研究了制备过程中的各种因素(如氧化剂、反应温度、石墨烯含量等)对PPy/RGO纳米复合材料产率及导电性能的影响。并采用热重分析(TGA)和导电测试分析了石墨烯含量对其热稳定性及电导率的影响。  相似文献   

17.
采用溶剂预分散的方法分散还原氧化石墨烯(RGO)微片,再结合硅烷偶联剂等处理RGO表面,并以原位聚合法制备RGO改性MC尼龙导电复合材料。研究了RGO含量、表观密度及表面处理方法对RGO改性MC尼龙导电复合材料电性能的影响;分析了RGO添加后对MC尼龙热性能的影响。结果表明,随着RGO含量的增加,RGO改性MC尼龙导电复合材料的表面电阻率和体积电阻率呈现逐渐减小趋势,电性能得到提高;RGO质量分数1.5%为RGO改性MC尼龙导电复合材料的渗滤阈值;当RGO质量分数达到2.5%时,RGO改性MC尼龙导电复合材料的表面电阻率达到1.04×102Ω,体积电阻率达到1.35×102Ω·m。  相似文献   

18.
以双十二烷基二甲基溴化胺非共价修饰还原石墨烯(DDAB–RGO)为纳米填料,通过溶液铸膜法制备了聚乳酸/功能化石墨烯(PLA/DDAB–RGO)纳米薄膜。用傅立叶变换红外光谱和扫描电子显微镜对DDAB–RGO及纳米复合薄膜的化学结构及形貌进行了表征,并对纳米薄膜的结晶性能、力学性能、热稳定性等进行了测试分析。结果表明,DDAB–RGO与PLA具有良好的相容性,均匀分散于PLA基体中,在较低DDAB–RGO含量时对PLA膜起到了纳米增强的作用,当其含量为0.2%时,PLA/DDAB–RGO纳米薄膜的拉伸强度、拉伸弹性模量比纯PLA膜分别提高了21%和36%。同时DDAB–RGO的加入还改善了PLA的结晶性、热稳定性。  相似文献   

19.
通过控制高锰酸钾的用量,采用改性悍马氧化法与氢碘酸还原法制备了一系列氧化石墨烯(GO)及还原石墨烯(RGO),研究了高锰酸钾用量对GO及RGO的形态、稳定性、成膜性能及导电性能的影响。研究结果表明:当石墨与高锰酸钾的质量比为2.5~3时,所得GO在具有较好分散性,且经还原后的膜电阻率较低,约为1.2×10-3Ω/cm。  相似文献   

20.
采用乙二胺(EDA)和氢氧化钠对涤纶织物进行改性,获得氨基化改性涤纶,再将改性涤纶浸渍氧化石墨烯(GO)溶液,涤纶表面的GO还原成还原氧化石墨烯(RGO)后得到具有导电性能的涤纶织物。采用扫描电镜(SEM)对导电涤纶进行表征,并进行耐洗和耐摩擦性能测试。研究结果表明,涤纶织物经EDA改性后对GO的吸附能力增强,织物导电性增加;改性涤纶的最佳导电整理工艺为GO溶液pH值6,5 g/L保险粉在95℃还原60min可使织物上GO较充分还原,改性涤纶织物的导电性随GO浓度的增大、还原温度的增加和还原时间的延长而增强,当GO为2g/L时,改性涤纶的表面电阻值降低至14.575 KΩ/cm。由SEM结果可知未经改性的涤纶织物表面光滑,经导电整理后织物表面覆盖一层石墨烯薄膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号