首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
根据贝壳珍珠层的结构特点,以金属Ti层为软质层,对TiB_2陶瓷薄膜进行仿生增韧处理,并通过压痕法研究了Ti/Ti B_2仿生多层膜的断裂韧性。结果表明:随着调制比Λ(t_(TiB_2):t_(Ti))的增大,多层膜的断裂韧性先增大而后减小,当Λ为5时,多层膜的断裂韧度达到最大值(KIC=2.68 MPa·m~(1/2))。对于相同厚度的Ti B_2单层膜而言,断裂韧度值仅为0.76MPa·m~(1/2),也就是说,Ti/Ti B_2仿生多层膜可有效提高陶瓷层的断裂韧性。沉积在Ti6Al4V基体上的多层膜在断裂过程中进行能量释放以径向裂纹为主,以环形裂纹为辅。由于多层膜中Ti子层的周期性引入,有效缓解了Ti B_2薄膜的内应力;当裂纹扩展至Ti子层时,Ti层可对裂纹尖端起到很好的钝化作用,使裂纹扩展方向发生偏转。此外,多层膜的界面增多,也相应增大了裂纹扩展的阻力,提高了多层膜的断裂韧性。  相似文献   

2.
调制周期对CrAlN/ZrN纳米多层膜韧性的影响   总被引:1,自引:3,他引:1       下载免费PDF全文
目的研究调制周期对纳米多层膜性能的影响。方法采用磁控溅射方法制备了CrAlN与ZrN的固定厚度比为2.6,不同调制周期(Λ为6,8,10,20 nm)的CrAlN/ZrN纳米多层膜。利用场发射扫描电镜(FESEM)表征薄膜的形貌、结构。用Dektak150型台阶仪测薄膜表面粗糙度。用Agilent Technologies G200纳米压痕仪检测涂层的硬度和弹性模量。用划痕仪测薄膜/基材的结合力,同时,引入抗裂纹扩展系数(CPR)表征纳米多层膜的韧性。结果 CrAlN/ZrN纳米多层膜断面皆为穿晶柱状结构,调制周期为20 nm时,多层膜层与层之间的界面清晰;多层膜表面呈致密的花椰菜状,厚度均约为2μm。调制周期为8 nm时,硬度为20.4 GPa,进一步增大调制周期,硬度下降。调制周期为8 nm的多层膜临界载荷L_(c2)为18 N,CPR值为73.2,L_(c2)与CPR值均高于其他调制周期的多层膜。在临界载荷L_(c2)处,裂纹扩展导致薄膜发生了严重的片状剥落,露出了亮白的热轧钢基底,薄膜失去了保护作用。结论实验表明,在多层膜厚度、调制比不变的条件下,改变调制周期能够改变多层膜的韧性。随着调制周期的增大,韧性呈先上升、后下降的趋势。调制周期为8 nm时,纳米多层膜的硬度最高,韧性最好,综合性能良好。  相似文献   

3.
采用磁控溅射工艺在硅基底上交替沉积NbN和TiSiN纳米层,通过改变靶材的Si含量,制备出一系列NbN/TiSiN纳米多层膜。采用X射线衍射仪(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)和纳米压痕仪研究Si含量对NbN/TiSiN纳米多层膜微观结构和力学性能的影响。结果表明:随着Si含量的增加,NbN相的结晶程度先增加后降低,薄膜的硬度、弹性模量和韧性也呈现出先增加后降低的趋势,当Si∶Ti=3∶22时,NbN/TiSiN纳米多层膜的硬度、弹性模量和韧性最高,分别为24.8 GPa、280.2 GPa和1.89 MPa·m1/2。结构表征表明:当Si∶Ti=3∶22时,NbN/TiSiN纳米多层膜的柱状晶生长状况最好,TiSiN层在NbN层的模板作用下转变为面心立方结构,并与NbN层呈共格外延生长。  相似文献   

4.
掺Ti量对类金刚石薄膜机械性能的影响   总被引:3,自引:3,他引:0  
采用非平衡磁控溅射技术,通过改变Ti靶溅射电流,在不锈钢衬底表面沉积了不同掺Ti量的类金刚石薄膜(Ti-DLC),研究了掺Ti量对薄膜的显微硬度、弹性模量、膜/基结合强度、断裂韧性及摩擦磨损行为的影响。结果表明:DLC薄膜掺杂Ti后,硬度明显提高,且随着Ti靶溅射电流的增大,薄膜硬度先增加、后降低,Ti靶溅射电流为1.5A时,薄膜硬度最高;掺杂适量的Ti,可以明显改善DLC薄膜的膜/基结合强度和断裂韧性,并能明显降低DLC薄膜的摩擦系数。  相似文献   

5.
张啸宇  谭俊 《表面技术》2015,44(12):80-84,91
目的研究多层薄膜的界面对薄膜性能的影响。方法通过直流磁控溅射法在45#钢表面制备Ti N及Ti/Ti N多层薄膜,采用扫描电镜和XRD衍射分析仪对薄膜表面形貌及相结构进行观察和分析,使用纳米压痕仪、电子薄膜应力分布测试仪对Ti N及Ti/Ti多层薄膜的力学性能以及残余应力大小进行研究,并运用电化学设备对Ti N及不同调制周期的Ti/Ti多层薄膜的耐腐蚀性能进行研究。结果制备的Ti N及Ti/Ti N多层薄膜表面光滑且结构致密,Ti N晶粒细小且为非晶相;薄膜力学性能良好,内部均存在残余压应力。随着调制周期的减小,弹性模量和硬度先减小后增大,内部残余应力逐渐减小且分布不均匀程度逐渐增大。薄膜在H_2SO_4中的腐蚀试验表明:当Ti/Ti N多层薄膜调制周期为1μm时,多层薄膜的耐腐蚀性能不如Ti N薄膜,随着Ti/Ti N多层薄膜随调制周期的减小,多层薄膜的耐腐蚀性能逐渐升高;当调制周期为0.5μm时,Ti/Ti N多层薄膜的耐蚀性能已超过Ti N薄膜。结论 Ti/Ti N多层薄膜界面的增多有助于减小薄膜的残余应力,并且可提高薄膜的耐蚀性能。  相似文献   

6.
为了阐明调制周期对薄膜微观组织及薄膜与基体结合力的影响,采用反应磁控溅射在Ti6Al4V基板上交替沉积了Ti层及TiN层制备了TiN/Ti多层膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度仪和划痕仪测量分析了薄膜的晶体结构、微观组织、硬度以及薄膜与基体之间的结合力。研究结果表明:TiN/Ti多层膜中均存在TiN,Ti和Ti2N 3种相。TiN/Ti多层膜均以柱状晶方式生长,在调制周期较大(5层)时,TiN和Ti层的界面清晰;随着调制周期的减小(层数增加),TiN和Ti层的界面逐渐消失。与单层TiN薄膜相比,多层TiN/Ti薄膜的硬度显著提高;但随着薄膜层数的增加,多层TiN/Ti薄膜硬度略微降低。当调制周期为80nm(30层)时,薄膜与基体的结合力明显提高,达到73N。  相似文献   

7.
根据贝壳珍珠层的结构特点,以金属Ti层为软质层,对TiB2陶瓷薄膜进行仿生增韧处理,并通过压痕法研究了Ti/TiB2仿生多层膜的断裂韧性。研究结果表明:随着调制比(Λ, tTiB2:tTi)的增大,多层膜的断裂韧性先增大而后减小,当Λ为5时,多层膜的断裂韧度达到最大值(KIC=2.68 MPa  相似文献   

8.
为研究离子源循环轰击对薄膜结构和电学性能的影响,通过离子源轰击辅助直流磁控溅射在200℃下沉积不同循环周期Ti N薄膜,采用场发射扫描电镜、原子力显微镜、X射线衍射仪表征薄膜表面形貌及组织结构。采用纳米压痕仪检测涂层的硬度和弹性模量。采用双电测四探针电阻仪测试室温下薄膜的电学性能。结果表明:离子源轰击在薄膜中形成了分层结构,膜层更加致密光滑,平均粗糙度由5.2 nm下降为2.7 nm。随着离子源循环轰击周期增加薄膜结晶性增强,并且当离子源循环轰击周期为3次时出现了Ti N(200)峰,薄膜硬度和弹性模量提高。当经过2次离子源循环轰击时薄膜电阻值最低为8.1μΩ·cm。  相似文献   

9.
采用非平衡反应磁控溅射的方法在Si(100)基片上沉积Ti(C,N)复合膜和不同调制周期、调制比的TiN/Ti(C,N)纳米多层薄膜。薄膜的微观结构和力学性能采用X射线衍射仪(XRD)、显微硬度计进行表征。结果表明,Ti(C,N)复合膜的微观结构和力学性能与掺入C的含量有关;TiN/Ti(C,N)纳米多层膜的微观结构和力学性能与调制周期和调制比有关,其显微硬度在一定的调制周期和调制比范围内出现了超硬现象。Ti(C,N)、TiN/Ti(C,N)均为δ-NaCl面心立方结构;Ti(C,N)复合膜显微硬度提高是因为固溶强化,TiN/Ti(C,N)纳米多层膜硬度的提高主要是共格外延生长在界面处产生的交变应力场。  相似文献   

10.
为了研究TiN/CrN多层薄膜微观结构与力学性能的关系,采用磁控溅射技术制备了TiN、CrN单层薄膜和3种不同调制周期的TiN/CrN多层薄膜。通过原子力显微镜和X射线衍射仪分析了膜的表面形貌和相结构。使用纳米压痕仪测试薄膜的硬度和压入塑性,用曲率法测定薄膜的残余应力。结果表明,TiN/CrN的多层薄膜是由TiN和Cr_2N两相组成,随着调制周期的增大,TiN层与CrN层之间的界面区域变小,界面平滑且明显。力学性能方面,多层薄膜的硬度和压入塑性比单层膜好,并且多层薄膜随调制周期的减小,硬度和压入塑性增大,残余应力随周期的增加而逐渐增大。综上可见,TiN/CrN多层薄膜的力学性能的改善取决于界面区域的大小和形貌,即调制周期。该结论与Hall-Petch理论相吻合。  相似文献   

11.
张欣  张金钰  刘刚  张国君  孙军 《金属学报》2011,47(2):246-250
通过单轴拉伸实验并结合原位电阻测量法系统研究了恒定调制比下调制波长(λ=10-250 nm)对聚酰亚胺基体上Cu/Nb纳米金属多层膜延性和断裂韧性的影响.微观分析表明,Cu/Nb的调制结构清晰,不存在明显的互混现象.实验结果表明,随着调制波长的减小,多层膜的延性和断裂韧性均呈现非单调演变趋势,在调制波长为50 nm左右...  相似文献   

12.
The Anand–Su theory for large elastic–plastic deformations of metallic glasses is modified to account for the strongly nonlinear and eventually softening dilatational volumetric elastic response of these materials. Using this theory, we have conducted finite-element simulations of fracture initiation at notch tips in a representative metallic glass under Mode-I, plane-strain, small-scale-yielding conditions. We show that our theory predicts three important experimentally observed phenomena: (a) fracture initiates ahead of the notch root, where the mean normal stress reaches a maximum value; (b) the fracture toughness increases linearly with the square-root of the notch-tip radius; and (c) the fracture toughness decreases as the ratio of the elastic shear modulus to the bulk modulus increases.  相似文献   

13.
赵阳  王娟  徐晓明  张庆瑜 《金属学报》2006,42(4):389-393
利用反应磁控溅射方法,制备了调制周期相同而调制比不同的TiN/TaN多层膜.利用XRD,HRTEM和纳米压痕仪分别对多层膜的结构、微观状态和力学性能进行了系统研究.结果表明:调制结构不仅改变多层膜的生长速率,而且能导致多层膜择优生长取向的变化;界面应力的存在使得薄膜生长速率随沉积层厚度的增加而下降;在TiN/TaN多层膜中存在着各自独立外延生长的[111]和[100]两种取向的调制结构,且具有不同的调制周期;调制周期为6nm左右的TiN/TaN多层膜的硬度与弹性模量分别提高约50%与30%;在调制比为3:1时,硬度最大值为34.2GPa,弹性模量为344.9GPa;根据结构和力学性能的分析结果,讨论了TiN/TaN多层膜的硬化机制.  相似文献   

14.
吴振强  夏原  李光  徐方涛 《金属学报》2008,44(1):119-124
采用纳米压入方法表征了热浸镀铝钢表面由Al2O3层、Al层和FeAl层组成的复合涂层的纳米硬度、弹性模量及断裂韧性等微观力学性能,采用扫描电镜(SEM)观察了纳米压痕形貌,并分析了孔洞对陶瓷层的纳米压入行为和压痕裂纹扩展的影响.结果表明:等离子体电解氧化(PEO)陶瓷层中包含许多微米和亚微米尺度的细小孔洞,陶瓷层弹性模量约为226.4 Gpa,纳米硬度约为19.6 Gpa.当纳米压入深度为250 nm时,所测得陶瓷层的力学参数分散性较大.与FeAl层比较,PEO陶瓷层具有较高的裂纹扩展阻力. FeAl层纳米压痕顶端产生了沿直线扩展的径向裂纹;而陶瓷层纳米压痕中除径向裂纹外出现了侧边裂纹.  相似文献   

15.
使用纳米压痕法测量了单晶SnO2纳米带的硬度、断裂韧性以及裂纹形核的临界应力。结果表明,当载荷大于临界值后微裂纹就从压痕顶端形核、扩展;与此相应,在载荷一位移曲线上出现位移突变平台,根据平台载荷计算出压痕裂纹形核的临界应力σc=3.4GPa;利用裂纹的长度计算出SnO2纳米带的断裂韧性为0.028—0.066MPa-m^1/2,其平均值为KIc=0.044MPa-rn^1/2,它比其它块体脆性材料的断裂韧性小一个数量级,实验测出SnO2纳米带的硬度H=6.25GPa和弹性模量E=86.7GPa。  相似文献   

16.
为了研究纳米多层膜的耐腐蚀性能以及腐蚀磨损机理,采用离子源辅助磁控溅射在TC4钛合金表面制备不同调制周期的CrSiN/SiN纳米多层膜。使用扫描电子显微电镜、能谱仪表征涂层的微观结构、腐蚀形貌以及元素分布;使用划痕仪、纳米压痕仪、维氏硬度计测量涂层的膜基结合力、硬度、弹性模量及断裂韧性,采用电化学工作站以及销盘磨损仪测量涂层耐腐蚀性和腐蚀磨损性。结果表明:调制周期为90 nm与360 nm时涂层耐腐蚀性能较好,腐蚀电流密度分别为1.31×10~(-8)A·cm~(-2)和1.20×10~(-8)A·cm~(-2)。此外,调制周期为45nm时,涂层硬度及弹性模量最大,分别为(22.5±0.6)GPa和(226.4±6.3)GPa,且腐蚀磨损率最低,为9.67×10~(-7)mm~3·N~(-1)·m~(-1)。多层膜结构显著改善了TC4钛合金的耐腐蚀及腐蚀磨损性能。  相似文献   

17.
Ceramic/metal, ceramic/ceramic, and ceramic/polymer bilayers are prepared to find the best design for a reliable material. The transparent bilayer enablesin situ observation of crack initiation. The elastic modulus of the substrate material in the bilayer is controlled from 2.35 GPa to 230 GPa by using different compositions of glass, metal, and polymer. The thickness of the ceramic coating layer is controlled from 120 μm to 5.6 mm. The surface of the coating material is abraded to control the strength and toughness. Classical cone cracks and transverse radial cracks are observed during Hertzian indentation. The crack initiations depend on not only material design parameters such as strength, toughness, and elastic modulus but also geometrical parameters such as coating thickness. Conditions for avoiding cracking are considered, in terms of the material and geometrical design parameters.  相似文献   

18.
本研究选择钽和铌的氮化物作为个体层材料,利用FJL560CI2型超高真空射频磁控与离子束联合溅射系统制备TaN、NbN及-系列的TaN/NbN多层薄膜.通过XRD和纳米力学测试系统以及摩擦磨损仪分析了该体系合成以后的晶体结构,以及调制周期对机械性能的影响.结果表明:多层膜的纳米硬度值普遍高于两种个体材料混合相的硬度值;当调制周期为8.5 nm时,TaN/NbN多层膜达到最大硬度30 GPa,结晶出现多元化,多层膜体系的硬度、应力、弹性模量以及膜-基结合性能均达到最佳效果.  相似文献   

19.
ZrN/W multilayered coatings with different nanoscale modulation periods have been synthesized at different deposition time using ion beam assisted deposition. XRD, AES, Nanoindenter and profiler were employed to investigate the influence of modulation period on microstructure and mechanical properties of the coatings. The results showed that all superlattice coatings almost revealed higher mechanical property than the monolithic ZrN and W coatings. At modulation period of 8.6 nm, XRD pattern showed a significant mixture of strong ZrN (111), W (110), as well as weak ZrN (220) textures. It possessed the highest hardness (∼ 26 GPa), elastic modulus (∼ 310 GPa), and fracture resistance (∼ 80 mN), compared with the ones with other modulation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号