首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
本文综述了锂电池电解质锂盐的研究现状,介绍了一种新型的电解质锂盐-氟烷基膦酸锂的合成方法,并对其具体工艺条件进行了描述.  相似文献   

2.
锂离子电池电解质锂盐研究进展   总被引:6,自引:0,他引:6  
庄全超  武山  刘文元  陆兆达 《化学世界》2002,43(12):667-670
介绍了锂离子电池电解质锂盐的化学和电化学。综述了近年来在新型电解质锂盐研究与探索方面的成果。新型电解质锂盐主要包括三类化合物 :(1 ) Li TFSI及其类似物 ;(2 )络合硼酸锂 ;(3 )络合磷酸锂。文章最后阐述今后电解质锂盐研究的可能发展方向及研究方法  相似文献   

3.
锂离子电池(Lithium ion battery)以高能量密度、开路电压大、循环寿命长以及环境友好等优点,而广泛应用在通讯基站、航空航天、新能源交通工具等领域。电解质锂盐作为锂离子电池不可或缺的部分,不但能在电解液中提供和传输锂离子,而且能够在电极材料表面形成保护层,在很大程度上决定着锂离子电池的容量、循环性能、安全性能、工作温度、能量密度和功率密度等性能。本文主要介绍了电解质锂盐的理化性质和作用,重点总结了目前常见的几种无机锂盐和有机锂盐的研究进展,对不同锂盐的优缺点进行了评述,并对电解质锂盐在锂离子电池领域的发展进行了展望。  相似文献   

4.
二氟草酸硼酸锂(LiDFOB)作为一种新盐,具有独特的化学结构,在锂离子电池中表现出诸多优异的电化学性能,未来有望取代传统电解质六氟磷酸锂(LiPF6)。本文对市面上已存在的LiDFOB制备路线进行汇总与改进,根据可能的反应机理进行分析,通过探索与正交实验方法,探索一条在实验室完全可以重复的合成路线。通过傅里叶变换红外光谱、X射线衍射进行检测其化学结构,用X射线光电子能谱与化学滴定法定量检测产品纯度,对LiDFOB的制备、提纯与表征进行研究。该方法简易、使用常用玻璃仪器、重复性高,将工业合成方法进行合理简化和创新,本实验为本科生及早参与科研,了解科研最前沿研究内容有重要的推动意义。  相似文献   

5.
从作为锂离子二次电池电解质的导电锂盐的分类、组成、结构和性能等方面进行分析,通过比较存在的差异,阐述了它们的优缺点及其在锂离子电池中的应用与研究进展。最后展望了锂离子二次电池电解质的发展方向和前景。  相似文献   

6.
介绍了新型锂盐双草酸硼酸锂(LiBOB)的基本性质,归纳了其合成、检测和提纯方法,重点阐述了LiBOB在石墨类负极上的成膜性能,综述了LiBOB的溶解性和电导率、热稳定性及在固体电解质中的应用,总结了LiBOB基电解质的不足,指明了其未来的研究方向。  相似文献   

7.
8.
四氟硼酸锂由于具有良好的热稳定性,对环境水分不太敏感而成为锂离子电池电解质研究的热点。介绍了四氟硼酸锂电解质材料的性质,综述了气-固反应法、水溶液法、非水溶剂法及氟化氢溶液反应法等四氟硼酸锂的制备方法。同时阐述了红外光谱分析法、X射线分析法、离子色谱分析法、热分析法及电化学性能分析法等四氟硼酸锂的表征技术,并提出了四氟硼酸锂作为锂离子电池电解质的研究与开发方向。  相似文献   

9.
综述了各种锂离子电池电解液用电解质盐的研究进展。指出了各种电解质盐在实际应用中的优缺点以及其特定的应用领域。  相似文献   

10.
以丙烯酸和氢氧化锂为原料用溶液聚合法合成聚丙烯酸锂(PAALi),将其熔于低共熔盐(一定比例的LiNO3-LiOOCCH3混合物)中得到新型高分子固体电解质(SPE),用IR技术进行了表征,讨论了影响合成PAALi工艺及新型固体电解质电导率的主要因素,在Li-NO3-LiOOCCH3质量比为1∶1时,将其按质量百分比80∶20与聚丙烯酸锂混合均匀并熔融,得到的电解质其室温离子电导率可达2×10-5S.cm-1.  相似文献   

11.
锂离子二次电池最新进展及评述   总被引:5,自引:1,他引:5  
郑子山  张中太  唐子龙  沈万慈 《化学世界》2004,45(5):270-273,254
锂离子电池已广泛应用于移动电话、笔记本电脑等便携式电器中,深受广大用户的钟爱,在未来的电动汽车也有着非常好的应用前景,必将对未来人们的生活产生深刻的影响。锂离子电池的电容量及循环性能不断得到提高,容量更大、质量更轻、体积更小、厚度更薄、价格更低的锂离子电池不断地被推向市场。新的电极材料及电解质材料不断开发出来,它们具有容量大、价格低、无环境污染、使用安全等优点。分别对锂离子电池的正极材料、负极材料、电解质材料的发展历史及最新发展状况进行综述及评论。  相似文献   

12.
采用化学还原-共沉积法制备了Ni-Sn-Sb三元合金材料,用XRD和SEM对其结构和形貌进行表征。根据充放电曲线、循环伏安和交流阻抗谱,探讨了合成电极的嵌/脱锂行为。研究表明:热处理后的Ni-Sn-Sb合金材料呈不均匀粒状结构;首次放电容量达到1 625 mAh.g-1,充电容量为628 mAh.g-1,循环20次后可逆容量仍有334mAh.g-1,库仑效率稳定在90%,具有较好的电化学性能。  相似文献   

13.
As lithium rechargeable batteries are considered a potential candidate for large-scale energy storage applications in devices such as electric vehicles (EVs) and smart grids, their safety has become of prime concern. This calls for the need to replace the flammable organic liquid electrolyte (LE) with an inorganic solid electrolyte (SE), and thus, develop bulk-type all-solid-state lithium batteries (ASLBs), fabricated using a scalable process. Sulfide SEs are considered the most competitive candidate owing to their high conductivity at room temperature (10−3–10−2 S cm−1), which is comparable to that of LEs, and their ductility, which enables the fabrication of ASLBs simply using cold pressing. In the present review, issues and challenges to be faced for the fabrication of bulk-type ASLBs using sulfide SEs are presented and discussed, with a special focus on the development of SEs, compatibility of the electrode materials with SEs, and structure of the composite electrodes. Recent progress made with the aim of addressing the aforementioned issues and challenges is also presented, to provide an outlook on the future of SEs and ASLBs.  相似文献   

14.
曾丽珍 《广东化工》2012,39(13):191-192
综述了近年来锂离子电池正极材料锂锰氧化物的研究现状,重点对锂锰氧化物的结构和性能的关系,尖晶石锂锰氧化物的制备以及其改性研究进行了阐述。  相似文献   

15.
聚合物锂离子电池的研究进展   总被引:3,自引:0,他引:3  
介绍了聚合物电解质的开发过程、分类、导电机理和研究方法以及聚合物电解质存在的问题.综述分析了提高导电聚合物电解质离子电导率的途径,并讨论了今后聚合物电解质的发展方向.  相似文献   

16.
锂二次电池中聚合物电解质及隔膜的研究进展   总被引:2,自引:0,他引:2  
本文对锂二次电池中应用的聚合物电解质和隔膜作了概述。简要介绍了聚合物电解质、隔膜的种类和制备方法及其对电池性能的影响,以及聚合物电解质和隔膜的研究近况和应用前景。  相似文献   

17.
锂离子电池正极材料尖晶石型锰酸锂的研究进展   总被引:1,自引:0,他引:1  
尖晶石型锰酸锂能量密度高、成本低、无污染、安全性好、资源丰富,是最有发展潜力的锂离子电池正极材料之一。但是循环过程中容量衰减较快成为制约其发展的主要因素。结合笔者的研究工作,详细阐述了锰酸锂的各种制备方法及其优缺点,综述了近几年来在表面修饰和体相掺杂改性方面的研究进展。  相似文献   

18.
锂离子二次电池有机电解液研究进展   总被引:1,自引:0,他引:1  
综述了目前国内外锂离子二次电池用有机电解液的发展状况。从新型导电锂盐的合成,高介电常数有机溶剂的配制,寻找新型电解液添加剂3个方面分析了如何改善和提高有机电解液的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号