首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a technique for a reactive mobile robot to adaptively behave in unforeseen and dynamic circumstances. A robot in nonstationary environments needs to infer how to adaptively behave to the changing environment. Behavior-based approach manages the interactions between the robot and its environment for generating behaviors, but in spite of its strengths of fast response, it has not been applied much to more complex problems for high-level behaviors. For that reason many researchers employ a behavior-based deliberative architecture. This paper proposes a 2-layer control architecture for generating adaptive behaviors to perceive and avoid moving obstacles as well as stationary obstacles. The first layer is to generate reflexive and autonomous behaviors with behavior network, and the second layer is to infer dynamic situations of the mobile robot with Bayesian network. These two levels facilitate a tight integration between high-level inference and low-level behaviors. Experimental results with various simulations and a real robot have shown that the robot reaches the goal points while avoiding stationary or moving obstacles with the proposed architecture.  相似文献   

2.
In this paper we address whole-body manipulation of bulky objects by a humanoid robot. We adopt a “pivoting” manipulation method that allows the humanoid to displace an object without lifting, but by the support of the ground contact. First, the small-time controllability of pivoting is demonstrated. On its basis, an algorithm for collision-free pivoting motion planning is established taking into account the naturalness of motion as nonholonomic constraints. Finally, we present a whole-body motion generation method by a humanoid robot, which is verified by experiments.  相似文献   

3.
Actuated artificial whiskers modeled on rat macrovibrissae can provide effective tactile sensor systems for autonomous robots. This article focuses on texture classification using artificial whiskers and addresses a limitation of previous studies, namely, their use of whisker deflection signals obtained under relatively constrained experimental conditions. Here we consider the classification of signals obtained from a whiskered robot required to explore different surface textures from a range of orientations and distances. This procedure resulted in a variety of deflection signals for any given texture. Using a standard Gaussian classifier we show, using both hand-picked features and ones derived from studies of rat vibrissal processing, that a robust rough-smooth discrimination is achievable without any knowledge of how the whisker interacts with the investigated object. On the other hand, finer discriminations appear to require knowledge of the target’s relative position and/or of the manner in which the whisker contact its surface. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.
Anthony G. Pipe
  相似文献   

4.
Any way you look at it, the robot has an exciting future. Soon, we can expect the robot to move out of the factory and enter the domestic and business worlds. The domestic robot will appear in the home as an electronic pet and soon will develop the ability to perform useful tasks there. The sensory ability of all robots will greatly improve. In the long run, robots will acquire the capabilities they have been described as having in the movies and science fiction books. Self-reproducing factories may be placed on the moon or on other planets to help meet our growing needs for energy and goods. Inspirational changes are on the way as robots become the helpers that humans have always dreamed of  相似文献   

5.
This paper presents the development of the planar bipedal robot ERNIE as well as numerical and experimental studies of the influence of parallel knee joint compliance on the energetic efficiency of walking in ERNIE. ERNIE has 5 links—a torso, two femurs and two tibias—and is configured to walk on a treadmill so that it can walk indefinitely in a confined space. Springs can be attached across the knee joints in parallel with the knee actuators. The hybrid zero dynamics framework serves as the basis for control of ERNIE’s walking. In the investigation of the effects of compliance on the energetic efficiency of walking, four cases were studied: one without springs and three with springs of different stiffnesses and preloads. It was found that for low-speed walking, the addition of soft springs may be used to increase energetic efficiency, while stiffer springs decrease the energetic efficiency. For high-speed walking, the addition of either soft or stiff springs increases the energetic efficiency of walking, while stiffer springs improve the energetic efficiency more than do softer springs. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.
R. A. BockbraderEmail:
  相似文献   

6.
Nowadays, biped robotics becomes an interesting topic for many control researchers. The biped robot is more adaptable than the other mobile robots in a varied environment and can have more diverse possibilities in planning the motion. However, it falls down easily and its control for stable walking is difficult. Therefore, generation of a desired walking pattern for the biped robot in the presence of some model uncertainties is an important problem. The proposed walking pattern should be also achievable by the designed controller. To achieve this aim and to reach the best control performance, the walking pattern and controller should be designed simultaneously rather than separately. In the present study, an optimal walking pattern is proposed to be tracked by a designed sliding mode controller. In this respect, a genetic algorithm (GA) is utilized to determine the walking pattern parameters and controller coefficients simultaneously. Here, high stability, minimum energy consumption, good mobility properties, and actuator limitations are considered as the important indexes in optimization. Simulation results indicate the efficiency of the proposed scheme in walking the understudy biped robot.  相似文献   

7.
Similarity is one of the most important abstract concepts in human perception of the world. In computer vision, numerous applications deal with comparing objects observed in a scene with some a priori known patterns. Often, it happens that while two objects are not similar, they have large similar parts, that is, they are partially similar. Here, we present a novel approach to quantify partial similarity using the notion of Pareto optimality. We exemplify our approach on the problems of recognizing non-rigid geometric objects, images, and analyzing text sequences.  相似文献   

8.
This paper introduces a system for real-time physiological measurement, analysis, and metaphorical visualization within a virtual environment (VE). Our goal is to develop a method that allows humans to unconsciously relate to parts of an environment more strongly than to others, purely induced by their own physiological responses to the virtual reality (VR) displays. In particular, we exploit heart rate, respiration, and galvanic skin response in order to control the behavior of virtual characters in the VE. Such unconscious processes may become a useful tool for storytelling or assist guiding participants through a sequence of tasks in order to make the application more interesting, e.g., in rehabilitation. We claim that anchoring of subjective bodily states to a virtual reality (VR) can enhance a person’s sense of realism of the VR and ultimately create a stronger relationship between humans and the VR.  相似文献   

9.
In this paper, we study adaptive finite element approximation schemes for a constrained optimal control problem. We derive the equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.  相似文献   

10.
The core cognitive ability to perceive and synthesize ‘shapes’ underlies all our basic interactions with the world, be it shaping one’s fingers to grasp a ball or shaping one’s body while imitating a dance. In this article, we describe our attempts to understand this multifaceted problem by creating a primitive shape perception/synthesis system for the baby humanoid iCub. We specifically deal with the scenario of iCub gradually learning to draw or scribble shapes of gradually increasing complexity, after observing a demonstration by a teacher, by using a series of self evaluations of its performance. Learning to imitate a demonstrated human movement (specifically, visually observed end-effector trajectories of a teacher) can be considered as a special case of the proposed computational machinery. This architecture is based on a loop of transformations that express the embodiment of the mechanism but, at the same time, are characterized by scale invariance and motor equivalence. The following transformations are integrated in the loop: (a) Characterizing in a compact, abstract way the ‘shape’ of a demonstrated trajectory using a finite set of critical points, derived using catastrophe theory: Abstract Visual Program (AVP); (b) Transforming the AVP into a Concrete Motor Goal (CMG) in iCub’s egocentric space; (c) Learning to synthesize a continuous virtual trajectory similar to the demonstrated shape using the discrete set of critical points defined in CMG; (d) Using the virtual trajectory as an attractor for iCub’s internal body model, implemented by the Passive Motion Paradigm which includes a forward and an inverse motor model; (e) Forming an Abstract Motor Program (AMP) by deriving the ‘shape’ of the self generated movement (forward model output) using the same technique employed for creating the AVP; (f) Comparing the AVP and AMP in order to generate an internal performance score and hence closing the learning loop. The resulting computational framework further combines three crucial streams of learning: (1) motor babbling (self exploration), (2) imitative action learning (social interaction) and (3) mental simulation, to give rise to sensorimotor knowledge that is endowed with seamless compositionality, generalization capability and body-effectors/task independence. The robustness of the computational architecture is demonstrated by means of several experimental trials of gradually increasing complexity using a state of the art humanoid platform.  相似文献   

11.
Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighborhood. It is therefore important to select the most appropriate filter to estimate the position of these persons. This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue.  相似文献   

12.
A central goal of robotics and AI is to be able to deploy an agent to act autonomously in the real world over an extended period of time. To operate in the real world, autonomous robots rely on sensory information. Despite the potential richness of visual information from on-board cameras, many mobile robots continue to rely on non-visual sensors such as tactile sensors, sonar, and laser. This preference for relatively low-fidelity sensors can be attributed to, among other things, the characteristic requirement of real-time operation under limited computational resources. Illumination changes pose another big challenge. For true extended autonomy, an agent must be able to recognize for itself when to abandon its current model in favor of learning a new one; and how to learn in its current situation. We describe a self-contained vision system that works on-board a vision-based autonomous robot under varying illumination conditions. First, we present a baseline system capable of color segmentation and object recognition within the computational and memory constraints of the robot. This relies on manually labeled data and operates under constant and reasonably uniform illumination conditions. We then relax these limitations by introducing algorithms for (i) Autonomous planned color learning, where the robot uses the knowledge of its environment (position, size and shape of objects) to automatically generate a suitable motion sequence and learn the desired colors, and (ii) Illumination change detection and adaptation, where the robot recognizes for itself when the illumination conditions have changed sufficiently to warrant revising its knowledge of colors. Our algorithms are fully implemented and tested on the Sony ERS-7 Aibo robots.
Mohan SridharanEmail:
  相似文献   

13.
Adaptive checkpointing strategy to tolerate faults in economy based grid   总被引:3,自引:2,他引:1  
In this paper, we develop a fault tolerant job scheduling strategy in order to tolerate faults gracefully in an economy based grid environment. We propose a novel adaptive task checkpointing based fault tolerant job scheduling strategy for an economy based grid. The proposed strategy maintains a fault index of grid resources. It dynamically updates the fault index based on successful or unsuccessful completion of an assigned task. Whenever a grid resource broker has tasks to schedule on grid resources, it makes use of the fault index from the fault tolerant schedule manager in addition to using a time optimization heuristic. While scheduling a grid job on a grid resource, the resource broker uses fault index to apply different intensity of task checkpointing (inserting checkpoints in a task at different intervals). To simulate and evaluate the performance of the proposed strategy, this paper enhances the GridSim Toolkit-4.0 to exhibit fault tolerance related behavior. We also compare “checkpointing fault tolerant job scheduling strategy” with the well-known time optimization heuristic in an economy based grid environment. From the measured results, we conclude that even in the presence of faults, the proposed strategy effectively schedules grid jobs tolerating faults gracefully and executes more jobs successfully within the specified deadline and allotted budget. It also improves the overall execution time and minimizes the execution cost of grid jobs.  相似文献   

14.
Using a geometric framework, the role of connection in nonlinear behavior of locomotion systems with symmetry is investigated in this paper. It is shown that the covariant derivative of connection plays a fundamental role in describing the nonlinear behavior of locomotion systems with Lie group symmetries. In particular, by placing prescribed closed paths properly in the shape space, it is argued that the system will exhibit nonlinear behaviors such as limit cycles and bifurcation in the fiber. The idea is used to investigate nonlinear behavior of a three link fish-like articulated body in perfect fluid. Numerical results are presented showing limit cycles and other coherent gaits resulting from various locations of shape circle.  相似文献   

15.
Unpredictability and complexity of social interactions are important challenges for a low functioning autistic child. The objective of this research is to study how a mobile robot can, by appearing more predictable, appealing and simple than a human being, facilitate reciprocal interaction such as imitative play. By conducting an exploratory study involving four children, we found that forms of shared conventions such as imitation of body movements and of familiar actions are higher with two children paired with a human mediator, compared to two children paired with a robot mediator. However, the two children paired with the robot mediator demonstrated increased shared attention (visual contact, physical proximity) and imitate facial expressions (smile) more than the children paired with the human mediator.
Henri MercierEmail:
  相似文献   

16.
Development of “STORK”, a watermelon-harvesting robot   总被引:2,自引:0,他引:2  
Recently, the production of heavy fruit and vegetables has been decreasing in Japan because strenuous labor is require to harvest them. A robot would allow them to be harvested more easily. We have developed the robot “STORK” to harvest watermelons. STORK has a low mass and a long working range. The position accuracy and repeatability of the manipulator, the required vacuum, and the allowance for position error of the vacuum pad were tested.  相似文献   

17.
Given a graph G=(V,E) with strictly positive integer weights ω i on the vertices iV, an interval coloring of G is a function I that assigns an interval I(i) of ω i consecutive integers (called colors) to each vertex iV so that I(i)∩I(j)= for all edges {i,j}∈E. The interval coloring problem is to determine an interval coloring that uses as few colors as possible. Assuming that a strictly positive integer weight δ ij is associated with each edge {i,j}∈E, a bandwidth coloring of G is a function c that assigns an integer (called a color) to each vertex iV so that |c(i)−c(j)|≥δ ij for all edges {i,j}∈E. The bandwidth coloring problem is to determine a bandwidth coloring with minimum difference between the largest and the smallest colors used. We prove that an optimal solution of the interval coloring problem can be obtained by solving a series of bandwidth coloring problems. Computational experiments demonstrate that such a reduction can help to solve larger instances or to obtain better upper bounds on the optimal solution value of the interval coloring problem.  相似文献   

18.
Focus is hid on the adaptive practical output-tracking problem of a chss of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive addition of a power integrator technique as a basic tool, a new smooth adaptive state feedback controller is designed. This controller can ensure all signals of the closed-loop systems are globally bounded and output tracking error is arbitrary small.  相似文献   

19.
This paper is concerned with adaptive stabilization of a class of reaction–diffusion systems governed by a nonlinear partial differential equation of the first order in time but the fourth order in space. In the presence of bounded deterministic disturbances, the adaptive stabilizer is constructed by the concept of high-gain nonlinear output feedback and the estimation mechanism of the unknown parameters. In the control system the global asymptotic stability and the convergence of the system state to zero will be guaranteed.  相似文献   

20.
In this paper, we employ low-rank matrix approximation to solve a general parameter estimation problem: where a non-linear system is linearized by treating the carrier terms as separate variables, thereby introducing heteroscedastic noise. We extend the bilinear approach to handle cases with heteroscedastic noise, in the framework of low-rank approximation. The ellipse fitting problem is investigated as a specific example of the general theory. Despite the impression given in the literature, the ellipse fitting problem is still unsolved when the data comes from a small section of the ellipse. Although there are already some good approaches to the problem of ellipse fitting, such as FNS and HEIV, convergence in these iterative approaches is not ensured, as pointed out in the literature. Another limitation of these approaches is that they cannot model the correlations among different rows of the “general measurement matrix”. Our method, of employing the bilinear approach to solve the general heteroscedastic parameter estimation problem, overcomes these limitations: it is convergent, at least to a local optimum, and can cope with a general heteroscedastic problem. Experiments show that the proposed bilinear approach performs better than other competing approaches: although it is still far short of a solution when the data comes from a very small arc of the ellipse.
Pei ChenEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号