首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
Shi YW  Wang Y  Abe Y  Matsuura Y  Miyagi M  Sato S  Taniwaki M  Uyama H 《Applied optics》1998,37(33):7758-7762
Cyclic olefin polymer (COP) is newly used as the inner dielectric of infrared, hollow glass waveguides because of its low extinction coefficient in the mid-infrared region. A liquid-flow coating and dry-cure process are employed to form the COP layer on the inside of a silver-coated hollow glass tube. In the coating process, cyclohexane is chosen as the solvent of COP to form a smooth and uniform COP layer. It is shown that COP-coated silver hollow glass waveguides show low loss properties for CO(2), CO, and Er:YAG laser light when the thickness of the COP layer is properly chosen.  相似文献   

2.
Flexible hollow fibers for delivery of the second, third, and fourth harmonic pulses of Q-switched Nd:YAG lasers are introduced. For the doubled (532-nm) wavelength, we fabricated a hollow fiber with an internal metal and polymer film by using a silver-mirror plating and a liquid-phase-coating method. For tripled (355-nm) and quadrupled (266-nm) Nd:YAG in the ultraviolet region, we fabricated aluminum hollow fibers with or without an internal polymer layer by using the metal-organic chemical-vapor deposition method. Both types of fiber show high stability for the transmission of high-peak power laser pulses with low transmission losses.  相似文献   

3.
To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.  相似文献   

4.
Mohri S  Kasai T  Abe Y  Shi YW  Matsuura Y  Miyagi M 《Applied optics》2002,41(7):1251-1255
We propose sealing techniques for medical hollow fibers to protect the inner surface of fibers from debris or water that scatters from targets. First, hollow fibers are sealed with a film of polymer that is easily formed by use of a dipping technique. The transmission loss of 20-microm-thick sealing film was 0.2 dB for Er:YAG laser light, and the maximum energy that is available for the film was 180 mJ. Second, a sealed glass cap was applied to the output end of hollow fiber. The silica-glass cap with a wall thickness of 400 microm shows a transmission loss of 0.5 dB and was not damaged by radiation of 400-mJ energy pulses.  相似文献   

5.
Iwai K  Shi YW  Matsuura Y  Miyagi M  Saito S  Arai Y 《Applied optics》2005,44(16):3266-3270
We have experimentally quantified calculus fragmentation by Er:YAG laser light. Er:YAG laser light was delivered to an underwater target through a sealed hollow optical fiber. Fragmentation efficiency was obtained for an alumina ball used as a calculus model when sealing caps with various focusing effects were used. Three types of human calculus were analyzed, and their absorption properties at the wavelength of Er:YAG laser light were obtained. The relationships among the absorption properties, calculus constituents, and fragmentation efficiency are discussed.  相似文献   

6.
Laser Gas Nitriding of Ti-6Al-4V Part 1: Optimization of the Process   总被引:4,自引:0,他引:4  
A multi-variable test method, known as the Orthogonal Array, was used to optimize the parameters for the laser gas nitriding process (LGNP) to avoid surface cracking. Based on the fundamental requirement of a crack-free condition, the processing parameters were further optimized to improve the surface finish and to obtain a reasonable hardened depth. The effects of processing parameters have also been investigated with respect to the characteristics of the laser nitrided layer. Two types of lasers, i.e., CO2 and Nd:YAG lasers were used. The CO2 laser was operated in both the continuous as well as the pulse mode, while the Nd:YAG laser was used only in the pulse mode. A Nd:YAG laser in the pulse mode provided a better surface finish and lower cracking severity.  相似文献   

7.
Miller J  Yu XB  Yu PK  Cringle SJ  Yu DY 《Applied optics》2011,50(6):876-885
Ultraviolet (UV) lasers have the capability to precisely remove tissue via ablation; however, due to strong absorption of the applicable portion the UV spectrum, their surgical use is currently limited to extraocular applications at the air/tissue boundary. Here we report the development and characterization of a fiber-optic laser delivery system capable of outputting high-fluence UV laser pulses to internal tissue surfaces. The system has been developed with a view to intraocular surgical applications and has been demonstrated to ablate ocular tissue at the fluid/tissue boundary. The fifth (213?nm) and fourth(266?nm) harmonics of a Nd:YAG laser were launched into optical fibers using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibers were used, all commercially available. The available energy and fluence as a function of optical fiber length was evaluated and maximized. The maximum fluence available to ablate tissue was affected by the wavelength dependence of the fiber transmission; this maximum fluence was greater for 266?nm pulses (8.4?J/cm2) than for 213?nm pulses (1.4?J/cm2). The type of silica/silica optical fiber used did not affect the transmission efficiency of 266?nm pulses, but transmission of 213?nm pulses was significantly greater through modified silica/silica optical fiber. The optical fiber transmission efficiency of 213?nm pulses decreased as a function of number of pulses transmitted, whereas the transmission efficiency of 266?nm radiation was unchanged. Single pulses have been used to ablate fresh porcine ocular tissue. In summary, we report a method for delivering the fifth (213?nm) and fourth (266?nm) harmonics of a Nd:YAG laser to the surface of immersed tissue, the reliability and stability of the system has been characterized, and proof of concept via tissue ablation of porcine ocular tissue demonstrates the potential for the intraocular surgical application of this technique.  相似文献   

8.
Miller J  Yu PK  Cringle SJ  Yu DY 《Applied optics》2007,46(3):413-420
We report on a method for delivering high fluence pulsed 266 nm laser radiation to the target tissue via an optical fiber. The fourth harmonic of a Nd:YAG laser was concentrated using a hollow glass taper and launched into an optical fiber. Fluences of up to 2 J/cm(2) were routinely output at the tapered optical fiber tip. The maximum fluence generated before failure of the optical fiber was between 3.5 and 8 J/cm(2). Ablation of ocular tissue was demonstrated using fluences of 1.0 and 0.4 J/cm(2). The delivery system has the potential for use in intraocular surgical procedures.  相似文献   

9.
Hollow glass waveguides with a 250-μm i.d. have been fabricated with a liquid-phase deposition technique that uses silica tubing as a base material. The losses of the 250-μm-bore guide measured at CO(2) laser wavelengths are as low as 2.0 dB/m. The straight losses for the hollow guides are in good agreement with theoretically predicted losses as a result of the nearly ideal structure of the guides. It is also shown that the guides have low bending losses, a nearly pure-mode delivery, and good high-power laser transmission. By proper design of the dielectric thickness, the guide is also able to deliver Er:YAG laser energy with a low loss of 1.2 dB/m for the 320-μm-bore waveguide. Because the hollow glass waveguide is very flexible and robust, it is quite suitable for medical applications.  相似文献   

10.
Matsuura Y  Miyagi M 《Applied optics》1999,38(12):2458-2462
A hollow fiber composed of a glass capillary tube and a metal thin film upon the inside of the tube is proposed for the delivery of ArF-excimer laser light. From theoretical analysis, aluminum is chosen as the metal layer. A thin aluminum film is deposited by metallorganic chemical-vapor deposition, with dimethylethylamine alane employed as the source material. Measured loss spectra in vacuum-ultraviolet and ultraviolet regions and losses for ArF-excimer laser light show the low-loss property of the aluminum-coated fiber at the 193-nm wavelength of ArF-excimer laser light. The straight loss of the 1-m long, 1-mm-bore fiber is 1.0 dB.  相似文献   

11.
The Er:YAG laser-induced damage (LID) threshold and modal properties of single-crystal sapphire fibers grown by the laser-heated pedestal-growth method have been measured. The lowest loss (~0.4-dB/m) sapphire fibers produce little mode mixing and therefore deliver a near-single-mode output profile if the Er:YAG laser input beam profile is also nearly Gaussian. Normally, however, Er:YAG laser output beam profiles are multimode with numerous high-energy spikes. This leads not only to a multimode output from the fiber but also increased fiber loss that is due to higher-order mode coupling. The results of LID testing give a damage fluence of ~1.4 kJ/cm(2) for 300-mum core-only sapphire fibers at 2.94 mum.  相似文献   

12.
Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers   总被引:1,自引:0,他引:1  
Passively Q-switched ceramic Nd3+:YAG lasers with ceramic Cr4+:YAG saturable absorbers are demonstrated. When the lasers are pumped by a 1-W cw laser diode, optical-optical efficiency as great as 22% is obtained with Cr4+:YAG of initial transmission ranging from 94% to 79%. The results are similar to those in their crystalline counterparts. The operation of Brewster's angle and the polarization state of the laser output are also investigated.  相似文献   

13.
Self-passively Q-switching of a diode-pumped Cr,Nd:YAG, where the Cr4+ is used as a saturable absorber for the 1064 nm laser emission is reported. The maximum average output power was obtained using an output coupler of R=86%. The self-Q-switched diode pumped laser yielded 1.86-W average output power with low threshold pumping power (≈1.7-W), average slope efficiency of ≈34%, pulse duration of about 14–16 ns, and modulation frequency ranging from 2.4 to 73 kHz, depending on the input pumping power. These results are the highest reported for self-Q-switched lasers. Higher slope efficiency (42%) and shorter Q-switched pulses were obtained for a Q-switched Nd:YAG/Cr4+:YAG diffusion bonded laser. A comparison of the codoped Cr,Nd:YAG laser performance, with that of a diffusion bonded laser is reported and analyzed.  相似文献   

14.
Continuous-wave and passively Q-switched microchip laser performance of Yb:YAG ceramics and single-crystals was investigated. Highly efficient continuous-wave Yb:YAG laser performance was observed at 1030 nm and 1049 nm for both Yb:YAG ceramics and crystals with different transmissions of output couplers. The laser performance of Yb:YAG ceramic is comparable to that of Yb:YAG single crystal. Meanwhile, the laser performance of laser-diode pumped Yb:YAG/Cr4+:YAG all-ceramics- and all-crystals-combination passively Q-switched microchip lasers were investigated. Sub-nanosecond laser pulses with peak power over 150 kW were obtained with different Yb:YAG/Cr4+:YAG combinations. Linearly polarized laser was observed in Yb:YAG/Cr4+:YAG all-crystals combination and circular polarized laser was obtained in Yb:YAG/Cr4+:YAG all-ceramics combination. The best laser performance was obtained with Yb:YAG/Cr4+:YAG all-crystals combination.  相似文献   

15.
Effenberger FJ  Dixon GJ 《Applied optics》1994,33(24):5537-5541
The properties of diode-pumped lasers with gradient-index (GRIN)-mirror resonators are described. The total loss of typical GRIN elements is measured and is found to be comparable with conventional mirrors. The efficiency, threshold, and modal quality of GRIN-mirror Nd:YAG lasers are shown to compare favorably with conventional designs. In addition, a polarized single-frequency laser that uses GRIN elements in conjunction with metal-film étalons is constructed and is shown to deliver output powers comparable with those of more complicated single-frequency designs.  相似文献   

16.
Magnetic domain refinement of silicon-steel laminations by laser scribing   总被引:2,自引:0,他引:2  
Laser scribing of 3% silicon steel laminations was carried out using three different lasers: a KrF excimer laser, a pulsed Nd:YAG laser and a continuous wave CO2 laser. The processing parameters included the energy fluence at the surface of the workpiece, pulse repetition rate and pulse separation distance (for the pulsed lasers), scan separation distance and scan direction. The samples were tested for hysteresis loss, permeability, coercivity, remanence and saturation induction before and after laser treatment. An overall improvement in the core loss was observed in the laser-scribed samples. The best improvement in core loss was obtained in excimer laser scribing on the rolling direction and CO2 laser scribing in the transverse direction. Three mechanisms were proposed to explain the improvement in energy efficiency characteristics of the silicon-steel samples: magnetic domain refinement, stress relaxation and inhibition of domain-wall movement. Domain refinement, namely the formation of subdomains, results from the shocks induced by the beam. Laser scribing also relieves the stresses that are induced in the material during manufacture. The scribe lines increase the surface resistivity of the material, resulting in reduced eddy current loss. Tensile stresses are created between the laser scribe lines that elongate the domains and serve to refine the domain-wall spacing thus inhibiting the wall movement and reducing core losses.  相似文献   

17.
Tsai TY  Birnbaum M 《Applied optics》2001,40(36):6633-6637
Flash-lamp-pumped Ho:YAG (2090-nm) and Tm:YAG (2017-nm) lasers were, for the first time to our knowledge, passively Q switched by use of a Cr(2+):ZnSe saturable absorber. A Q-switched Ho laser with 1.3-mJ pulse energy and ~90-ns pulse duration and a Q-switched Tm laser with ~3.2-mJ pulse energy and 90-ns pulse duration were demonstrated. Compared with the free-running output energies at the Q-switching threshold pump levels, the Q-switching efficiencies were approximately 5% for the Ho:YAG laser and 16% for the Tm:YAG laser.  相似文献   

18.
Dong J  Deng P  Liu Y  Zhang Y  Xu J  Chen W  Xie X 《Applied optics》2001,40(24):4303-4307
By using a continuous-wave Ti:sapphire laser as a pumping source, we demonstrated a passively Q-switched Yb:YAG laser at room temperature with Cr(4+):YAG as the saturable absorber. We achieved an average output power of as much as 55 mW at 1.03 mum with a pulse width (FWHM) as short as 350 ns. The initial transmission of the Cr(4+):YAG has an effect on the pulse duration (FWHM) and the repetition rate of the Yb:YAG passively Q-switched laser. The Yb:YAG crystal can be a most promising passively Q-switched laser crystal for compact, efficient, solid-state lasers.  相似文献   

19.
Katagiri T  Matsuura Y  Miyagi M 《Applied optics》2002,41(36):7603-7606
Infrared hollow waveguides utilizing a dielectric multilayer are examined by use of a photonic bandgap theory. It is shown that, in the waveguide consisting of quarter-wave film stack, the act of covering the dielectric films with a metal layer is effective in the reduction of the number of film layers. To verify the effect of this design, we fabricated a prototype waveguide with three dielectric layers of SiO2/Ta2O5/SiO2 and a silver layer by using a liquid-phase coating technique. From the loss spectrum of the fabricated waveguide, it is confirmed that, as designed, the waveguide shows wideband low-loss property at the wavelength of Nd:YAG laser light 1.06 microm.  相似文献   

20.
Laser gas nitriding of Ti-6A1-4V has been investigated with both CO2 and Nd:YAG lasers. Results indicate that Nd:YAG laser in pulse mode provides a better surface finish and a lower cracking severity than CO2 laser. A crack-free nitrided layer has been obtained by optimizing the processing parameters. Titanium nitride (TiN) significantly increases the hardness of the nitrided surfaces. The amount of titanium nitride produced depends on the processing parameters, such as laser pulse energy and nitrogen concentration. With optimized parameters, the nitrided surface is somewhat rougher than the polished base metal but much smoother than the shot peened surface. The shrinkage effect in the laser melt zone produces surface residual tensile stresses regardless of the processing environment. Preheating or stress relieving after laser nitriding can significantly reduce the residual tensile stress level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号