首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The corrosion protection from sulfuric acid anodized coatings on 2024 aluminum and SiC particle reinforced 2024 aluminum metal matrix composite (SiCp/2024Al MMC) in 3.5 wt.% NaCl aqueous solution was investigated using electrochemical methods. The results show that the anodized coating on 2024Al provides good corrosion protection to 3.5 wt.% NaCl, and the anodized coating on the SiCp/2024Al MMC provides some corrosion protection, but it is not as effective as for 2024Al because non-uniformity in thickness and cavities present are associated with the SiC particulates. Cavities above SiC particles are the reason that the anodized coating on the MMC cannot be completely sealed by hot water as with anodic Al alloy. SiC particle anodizes at a significantly reduced rate compared with the adjacent Al matrix. This gives rise to alumina film encroachment beneath the particle and occlusion of the partly anodized particle in the coating. It was found that the barrier layer of anodized Al MMC is not continuous, and it is composed primarily of the barrier layer of anodized Al matrix and a barrier-type SiO2 film on occluded SiC particles in the coating. A new formation mechanism of coating growth during anodizing of a SiCp/2024Al MMC was proposed.  相似文献   

2.
Abstract

A336 Al matrix composites containing different volume fraction and mean mass particle size of SiC particles as the reinforcing phase were synthesised by evaporative pattern casting (EPC) route. The process consisted of fabricating of EPS/SiCp composite pattern followed by EPC of A336 Al alloy. The EPS/SiCp pattern was made by blending SiC particles with expandable polystyrene (EPS) beads and placing them in expanding mould heating with steam until EPS beads expand completely. Uniform distributed SiC particles around the EPS beads and locally movement of them during pouring and degradation leads to homogenous distribution of particles in final Al/SiCp composite. Higher modulus, strength and hardness were observed in the composites than the unreinforced Al alloy part. The fracture surfaces of the composite samples exhibited dimple surfaces and fracture in SiC particles.  相似文献   

3.
Abstract

Aluminium based metal matrix composite powder was prepared using a stone mill. Elemental powders of pure aluminium and SiC particle reinforcement were milled in a horizontal stone mill at a constant rotation. Two different mill gaps were employed to investigate the distribution of SiC particles embedded in the aluminium matrix. In each case, 1 ton h-1 of Alp/SiCp composite powder was produced. The shape of the aluminium particles changed from ligamental to spherical and the angular faceted SiC particles became more spherical in form. Morphological and microstructural observations revealed that the advantages of using a stone mill to produce composite powder were that it provided well distributed SiC particles and good bonding between matrix and reinforcement. The mixing mechanism of the stone mill can be described as follows: shear deformation of aluminium particles and embedding of the SiC into the aluminium flakes, rolling and cold welding of the Al/SiC composite flakes to form rolls, and fracture of the composite rolls into spherical particles. Hot extrusion improved the distribution of the SiC particles in the matrix.  相似文献   

4.
A major challenge for full utilization of the potentials of SiCp reinforced metal matrix composites is the uniform dispersion of very fine SiC particles in the matrix alloys. In this study, a novel method for gradual in situ release of properly wetted SiC particles with average size of less than 3 μm in the liquid metal was employed which greatly overcame this challenge. SiC particles were injected into the melt in three different forms, i.e., untreated SiCp, milled particulate Al-SiCp composite powder, and milled particulate Al-SiCp-Mg composite powder. The resultant composite slurries were then cast in either a fully liquid state (stir casting) or semisolid state (compocasting). Subsequently, the effects of the type of the injected powder and the casting method on the microstructural and mechanical characteristics of the cast composites at room temperature and 300 °C were investigated. The results demonstrated that distribution of SiC particles in the matrix were greatly improved by injecting milled composite powders instead of untreated SiC particles into the melt. Also casting the composite slurries in a semisolid state instead of fully liquid state slightly improved the distribution. The ultimate tensile strength, yield strength and elongation at room temperature of Al356/5 vol.% SiCp composite manufactured by compocasting of the (Al-SiCp-Mg)cp-injected melt were increased by 113%, 90% and 135%, respectively, compared to those of the composite manufactured by stir casting of the untreated-SiCp injected melt. The improvements in these properties at 300 °C were about 100%, 103% and 129%, respectively. Almost all the composite samples retained more than 90% of their strengths at 300 °C, whereas the monolithic samples lost more than 25% of their strength at this temperature. The composites manufactured by compocasting of (Al-SiCp-Mg)cp-injected melts exhibited a typical ductile fracture surface with equiaxed dimples at both room temperature and 300 °C.  相似文献   

5.
Aluminum–silicon carbide composite (Al–SiCp) is one of the most promising metal matrix composites for their enhanced mechanical properties and wear resistance. In the present study, Al–SiC (average size 55 μm) composites with 5% and 10% by volume were fabricated by stir casting technique. The equal-channel angular pressing (ECAP) was then applied on the cast composites at room temperature in order to study the effect of ECAP passes on the SiCp size and distribution. The ECAP process was successfully carried out up to 12(8) passes for Al–5%(10%)SiC samples. Microstructure study revealed that the highest refinement by breakage of SiCp was achieved after the first ECAP pass and that further refinement took place in the next passes. More breakage of the SiCp was found in the composite richer in reinforcing particles so that the SiCp reached approximately 1 μm in the Al–10%SiC after 8 passes and 4 μm in Al–5%SiC after 12 ECAP passes. The distribution of SiC reinforcement particles also improved after applying ECAP. The factors including decrease in reinforcing particle size, improvement in their distribution, decrease in porosity in addition to strain hardening and grain refining of the matrix resulted in enhancement of tensile and compressive strengths as well as hardness by more than threefold for the Al–5%SiC after 12 passes and for Al–10%SiC after 8 passes compared to the cast composites. Additionally, the composite remained ductile after the ECAP process. The fracture surface indicated good bond between the matrix and the reinforcement.  相似文献   

6.
《Materials Letters》2004,58(17-18):2314-2321
Fatigue crack initiation and small crack growth were studied under axial loading using powder metallurgy 2024 aluminum-matrix composites reinforced with SiC particles of three different sizes of 5, 20 and 60 μm. The 5 and 20 μm SiCp/Al composites exhibited nearly the same fatigue strength as the unreinforced alloy, while the 60 μm SiCp/Al composite showed a significantly lower fatigue strength due to its inferior crack initiation resistance that could be attributed to interface debonding between particles and the matrix. Small crack growth behaviour was different depending on stress level. At a low applied stress, the addition of SiC particles enhanced the growth resistance, particularly in the composites reinforced with coarser particles, while at a high applied stress, the 60 μm SiCp/Al composite showed a considerably low growth resistance, which could be attributed to interaction and coalescence of multiple cracks. In the 5 μm SiCp/Al composite, small cracks grew avoiding particles and thus few particles appearing on the fracture surfaces were seen, particularly in small crack size region. In the 20 and 60 μm SiCp/Al composites, they grew along interfaces between particles and the matrix and the number of particles appearing on the fracture surfaces increased with increasing crack size or maximum stress intensity factor.  相似文献   

7.
A centrifugal casting method is presented in this paper for processing Al/SiCp Functionally Gradient Material (FGM), along with the corresponding microstructural characterization. Results are presented and discussed on SiC particles distribution, particles-solidification front interactions, matrix micro-structure, and porosity distribution in the castings as a function of the centrifugal forces applied. Three different casting rotational speeds (700, 1000 and 1300 rpm) were utilized while keeping all other casting conditions constant. For the highest speed applied, a variation of graded composition in the range of 20 to 44 vol% of SiC was obtained. Moreover, such progressive concentration of particles was observed to be very homogeneous due to engulfment of particles (promoted by the high relative velocity between the solidification front and particles) and also as a consequence of elevated cooling rates developed in this case. Additional results showed that the matrix micro-structure is modified according to the SiC reinforcement content and cooling rates, which both depend on the centrifugal forces applied.  相似文献   

8.
Statistical analysis for strength and spatial distribution of reinforcement in die-cast SiCp/Al alloy composites was performed in order to predict the reliability of composites. Microstructural analysis was also done to determine the critical features of the composites. Die-casting was carried out using the preheated die at the casting temperature range of 620–750°C. It was found that the SiC pacticulates were homogeneously dispersed in die-cast Al matrix alloy, resulting from the refinement of dendritic cell size due to rapid cooling rate. The tensile strength of die-cast SiCp/Al alloy composites was higher than that of die-cast Al matrix alloy. Also, the tensile strength was slightly increased with increasing SiC particulate volume fraction at the casting temperature range of 650–700°C. It was concluded that the die-cast temperatures of 750 and 700°C are optimum condition for the distribution of SiC particulates in consequence of good fluidity of melt for 10 and 20 vol.% SiCp/Al alloy composites, respectively. However, the strength scattering of composites was increased with increasing SiC particulate volume fraction. For the statistical evaluation of strength, the maximum Weibull modulus of die-cast SiCp/Al alloy composites, which was obtained at the cast temperature of 700°C, was 29.6 in Al matrix alloy, 22.2 in 10 vol.% SiCp and 14.2 in 20 vol.% SiCp, respectively.  相似文献   

9.
The effect of size of reinforcements on morphology and thickness of anodic coatings on 3.5 μm and 10 μm SiC particles reinforced 2024Al metal matrix composites (SiCp/Al MMCs) formed in sulfuric acid was investigated with optical microscopy and scanning electron microscopy. The thickness of anodized coating on the MMCs is strongly dependent of size of SiC particles, and it is smaller for the MMC with smaller SiC particles because growth of more pores is affected when the concentration of SiC particles is fixed. The oxide/substrate interface became locally scalloped, and the anodized coatings formed on the MMCs were non-uniform in thickness, especially for the MMC reinforced by bigger particles.  相似文献   

10.
The dynamic compressive properties of SiC particle reinforced pure Al matrix composites, fabricated by spark plasma sintering technique with mixture powders prepared by mechanical alloying process, were tested in this paper. Two different average SiC particle sizes of 12 μm and 45 μm were adopted, and the compressive tests of these composites at strain rates ranging from 800/s to 5200/s were conducted by split Hopkinson pressure bar. The damage mechanism of the SiCp/Al composites was analyzed through the microstructural observations and high-precision density measurements. Results show that the dynamic properties and damage accumulation of these composites are significantly affected by the particle distribution, size, particle cracking, particle/matrix interface debonding and adiabatic heat softening. The composites containing smaller SiC particles exhibit higher flow stress, lower strain rate sensitivity, and less damage at high strain rate deformation.  相似文献   

11.
Axial fatigue tests have been performed at three different stress ratios, R, of ?1, 0 and 0.4 using smooth specimens of an aluminium alloy composite reinforced with SiC particulates of 20 μm particle size. The effect of stress ratio on fatigue strength was studied on the basis of crack initiation, small crack growth and fracture surface analysis. The stress ratio dependence of fatigue strength that has been commonly observed in other materials was obtained, in which fatigue strength decreased with increasing stress ratio when characterized in terms of stress amplitude. At R=?1, the fatigue strength of the SiCp/Al composite was the same as that of the unreinforced alloy, but at R= 0 and 0.4 decreased significantly, indicating a detrimental effect of tensile mean stress in the SiCp/Al composite. The modified Goodman relation gave a fairly good estimation of the fatigue strength at 107 cycles in the unreinforced alloy, but significantly unconservative estimation in the SiCp/Al composite. At R= 0 and 0.4, cracks initiated at the interfaces between SiC particles and the matrix or due to particle cracking and then grew predominantly along the interfaces, because debonding between SiC particles and the matrix occurred easily under tensile mean stress. Such behaviour was different from that at R=?1. Therefore, it was concluded that the decrease in fatigue strength at high stress ratios and the observed stress ratio dependence in the SiCp/Al composite were attributed to the different fracture mechanisms operated at high stress ratios.  相似文献   

12.
Abstract

SiCp/Al composites containing high volume fraction SiC particles were fabricated using a pressure infiltration casting process, and their thermophysical properties, such as thermal conductivity and coefficient of thermal expansion (CTE), were characterised. High volume fraction SiC particulate preforms containing 50–70 vol.-%SiC particles were fabricated by ball milling and a pressing process, controlling the size of SiC particles and contents of an inorganic binder. 50–70 vol.-%SiCp/Al composites were fabricated by high pressure infiltration casting an Al melt into the SiC particulate preforms. Complete infiltration of the Al melt into SiC preform was successfully achieved through the optimisation of process parameters, such as temperature of Al melt, preheat temperature of preform, and infiltration pressure and infiltration time after pouring. Microstructures of 50–70 vol.-%SiCp/Al composites showed that pores resided preferentially at interfaces between the SiC particles and Al matrix with increasing volume fraction of SiC particles. The measured coefficients of thermal expansion of SiCp/Al composites were in good agreement with the estimated values based on Turner's model. The measured thermal conductivity of SiCp/Al composites agreed well with estimated values based on the 'rule of mixture' up to 70 vol.-% of SiC particles, while they were lower than the estimated values above 70 vol.-% of SiC particles, mainly due to the residual pores at SiC/Al interfaces. The high volume fraction SiCp/Al composite is a good candidate material to substitute for conventional thermal management materials in advanced electronic packages due to their tailorable thermophysical properties.  相似文献   

13.
One of the great challenges of producing cast metal matrix composites is the agglomeration tendency of the reinforcements. This would normally result in poor distribution of the particles, high porosity content, and low mechanical properties. In the present work, a new method for uniform distribution of very fine SiC particles with average size of less than 3 μm was employed. The key idea was to allow for gradual in situ release of properly wetted SiC particles in the liquid metal. For this purpose, SiC particles were injected into the melt in three different forms, i.e., untreated SiCp, milled particulate Al–SiCp composite powder, and milled particulate Al–SiCp–Mg composite powder. The resultant composite slurries were then cast from either fully liquid (stir casting) or semisolid (compocasting) state. Consequently, the effects of the casting method and the type of the injected powder on the microstructural characteristics as well as the mechanical properties of the cast composites were investigated. The results showed that the distribution of SiC particles in the matrix and the porosity content of the composites were greatly improved by injecting milled composite powders instead of untreated-SiC particles into the melt. Casting from semisolid state instead of fully liquid state had similar effects. The average size of SiC particles incorporated into the matrix was also significantly reduced from about 8 to 3 μm by injecting milled composite powders. The ultimate tensile strength, yield strength and elongation of Al356/5 vol.%SiCp composite manufactured by compocasting of the (Al–SiCp–Mg)cp injected melt were increased by 90%, 103% and 135%, respectively, compared to those of the composite manufactured by stir casting of the untreated-SiCp injected melt.  相似文献   

14.
Two 6061 Al alloy matrix composites reinforced with rods that are themselves composites of the same Al alloy reinforced with a high volume fraction of SiC particles were studied. After vacuum pressure infiltration, one was hot extruded at a ratio of 10 : 1 and the other at a ratio of 60 : 1. The fracture characteristics of the two SiCp-6061Al/6061Al composites were examined in detail. It was found that increasing the hot extrusion ratio of this kind of composite can improve the bonding between the SiCp-6061Al bars and the 6061Al matrix. The strengths of the SiCp-6061Al bars and the 6061Al matrix were considered to increase with increasing extrusion ratio. Thus, the SiCp-6061Al/6061Al composite extruded at a ratio of 60 : 1 shows fracture characteristics which are different from the composite extruded at a ratio of 10 : 1. The former has a higher fracture toughness, and its crack opening displacement versus load curve indicates a higher elastic modulus and maximum load. After application of the maximum external load, there is a slow decrease with increasing crack opening displacement in the case of the 60 : 1 extruded composite, but the load can be maintained for wide crack opening displacement in the case of the 10 : 1 extruded composite.  相似文献   

15.
The fabrication process and thermal properties of 50–71 vol% SiCp/Al metal matrix composites (MMCs) for electronic packaging applications have been investigated. The preforms consisted with 50–71 vol% SiC particles were fabricated by the ball milling and pressing method. The SiC particles were mixed with SiO2 as an inorganic binder, and cationic starch as a organic binder in distilled water. The mixtures were consolidated in a mold by pressing and dried in two step process, followed by calcination at 1100 °C. The SiCp/Al composites were fabricated by the infiltration of Al melt into SiC preforms using squeeze casting process. The thermal conductivity ranged 120–177 W/mK and coefficient of thermal expansion ranged 6–10 × 10–6/K were obtained in 50–71 vol% SiCp/Al MMCs. The thermal conductivity of SiCp/Al composite decreased with increasing volume fraction of SiCp and with increasing the amount of inorganic binder. The coefficient of thermal expansion of SiCp/Al composite decreased with increasing volume fraction of SiCp, while thermal conductivity was insensitive to the amount of inorganic binder. The experimental values of the coefficient of thermal expansion and thermal conductivity were in good agreement with the calculated coefficient of thermal expansion based on Turner's model and the calculated thermal conductivity based on Maxwell's model.  相似文献   

16.
《Composites Part A》1999,30(6):823-827
The present study has investigated the joining performance of SiC particulate reinforced aluminium metal matrix composite (Al/SiCp–MMC) by vacuum brazing process. After the joints brazed with Al–Si–Mg foil brazing filler metal at different brazing batches, both the mechanical properties and the microstructures of brazed joints were estimated. Moreover, the influence of SiCp size, SiCp volume percentage and the brazing parameters on bonding quality of the joints have also been discussed in detail. The results have revealed that the bonding quality either in SiCp/Al interface or in SiCp/SiCp interface belongs to weak bonding, and the results also show that under the same brazing parameters condition, the strength of brazed joints decreases along with increasing the SiCp volume percentage. In addition, the results also indicate that for a constant SiCp volume percentage the strength of brazed joints decreases when SiCp size increases. These results are very useful for the joining design of discontinuously reinforced metal matrix composites and further for the optimum design of composition of composites.  相似文献   

17.
Abstract

In the present paper, a novel pretreatment process for SiC particulate and a new mechanical–electromagnetic combination stirring process for fabricating Zn–Al(ZA27)/SiCp composites are described. The optimal pretreatment route and the most appropriate SiC particle parameters were experimentally determined. The pretreated SiC particles were easily incorporated and dispersed in the ZA27 alloy melt and were not agglomerated before addition to the melt. The surface status of the SiC particles before and after pretreatment was observed and analysed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that gas existing on the SiC particle surfaces by physical and chemical absorption was a significant hindrance to the incorporation and dispersion of SiC particles in the alloy melt. The gas absorption was induced by ultrafine SiC powders, fracture steps, and ions existing on the SiC particle surfaces. The carbon, silicon, and oxygen contents on the SiC surface were varied with different pretreatment techniques. Moreover, a dense layer of amorphous SiO2, which improves wetting of SiC particles in the ZA27 melt, was formed owing to calcination of SiC particles in air. The new combined stirring process exploits the advantages of both mechanical and electromagnetic stirring of the melt at the different processing stages during fabrication. The microstructural characteristics of the resulting composites are: homogeneously distributed SiC particles, fewer macro gas blows and inclusions, and little shrinkage porosity in comparison to composites fabricated by a mechanical stirring process. Finally, the mechanisms of degassing and reducing the porosity and the number of oxide inclusions are discussed.  相似文献   

18.
Hu  C.  Baker  T. N. 《Journal of Materials Science》1995,30(4):891-897
When SiC particulate (SiCp) is preplaced on an aluminium alloy surface, a molten zone can be formed in the aluminium specimen by laser processing, and there is a possibility of producing anin-situ Al-SiCp metal matrix composite (MMC) layer on the surface, which will modify the surface properties. Under specific laser processing conditions in the present work, a smooth and continuous Al-SiCp MMC layer was developed on the surface with well-distributed and embedded SiCp in the layer. In most cases, the SiCp partially dissolved in the liquid and reprecipitated during the solidification. The dissolution of the SiCp is discussed, and the precipitate in the present work is identified as Al4SiC4. The thickness of the Al-SiCp MMC layer was limited to 30–50 m when SiCp was preplaced on the specimen. The mechanism of both the formation of the Al-SiCp and the limitation of the MMC layer thickness in this process was studied.  相似文献   

19.
Bonding mechanism between silicon carbide and thin foils of reactive metals   总被引:4,自引:0,他引:4  
Pressureless-sintered SiC pieces and SiC single crystals were joined with foils of reactive metals at 1500° C (1773 K) for titanium and zirconium foils or at 1000° C (1273 K) for Al/Ti/Al foils. Bend testing at various temperatures up to 1400° C (1673 K), optical and electron microscopy, and electron-probe X-ray microanalysis studies were carried out on the specimens. From the results, it was concluded that the fairly high bond strength of titanium-foil joined SiC specimens might be attributed to the formation of a Ti3SiC2 compound, since good lattice matching between SiC and Ti3SiC2 was obtained in the SiC single crystals. Also in the Al/Ti/Al-foil joined SiC, high bond strength was obtained, but it decreased steeply at 600° C (873 K) because of a retained aluminium phase. The bond strength in the zirconium-foil joined SiC was low.  相似文献   

20.
The effects of SiC, Al2O3, and ZrO2 particles on the characteristics of Al/SiC, Al/Al2O3, and Al/ZrO2 metal matrix composites (MMCs) have been studied in the present research work. The comparison of machining characteristics has been done to analyze the behavior of various reinforced particles with the variation of laser machining variables. The output characteristics such as dross height and kerf deviation have been investigated and compared with each MMCs. SEM and XRD have been used for the investigation of morphological changes in the structure and agglomeration of reinforced particles. The crack and recast layer formation has been examined in the specimens of higher quantity of reinforced particles. It was observed that the MMC material reinforced with SiC particles has shown different behavior as compared to other MMC materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号