首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Function‐graded proton exchange membranes (G‐PEMs) based on poly(tetrafluoroethylene‐co‐hexafluoropropylene) were fabricated for direct methanol fuel cells (DMFCs) via electron beam‐grafting using the heterogeneous energy deposition technique. The G‐PEMs had a water uptake gradient in the proton transfer direction, originating from the sulfonic acid group gradient. The distribution of sulfonic acid groups in the various G‐PEMs was evaluated using X‐ray photoelectron spectroscopy. Four types of PEMs (flat‐type, strong‐gradient, meso‐gradient, and weak‐gradient types) were fabricated. By varying the direction of the G‐PEMs, the methanol permeation test and DMFC operation were performed with two orientations of the sulfonic acid group gradient, decreasing from the methanol injection (anode) side (decrease‐type) or the other (cathode) side (increase‐type). The methanol permeability of the strong‐gradient, meso‐gradient, and weak‐gradient G‐PEMs was lower than that of Nafion®117 and the flat‐type PEM. The “increase‐type” orientation of the strong‐gradient G‐PEM resulted in the lowest methanol permeability. The DMFC performance of the G‐PEMs was influenced by the thickness direction, such as “decrease‐type” and “increase‐type.” The performance of the “decrease‐type” assembly was higher than that of the “increase‐type.” The “decrease‐type” assembly with P‐200 k (weak‐gradient G‐PEM) exhibited the highest performance of the fabricated PEMs, comparable to that of Nafion®117.  相似文献   

2.
Sulfonated poly(aryl ether ketone)s (SPAEK) copolymers were synthesized by aromatic nucleophilic polycondensation from 3,3′, 5,5′‐tetramethyl‐4, 4′–biphenol, 1,4‐bis(4‐fluorobenzoyl) benzene, and disulfonated difluorobenzophenone. The SPAEK membranes did not exhibit excessive swelling in hot water and at the same time show the proton conductivities in the range of 0.030 S/cm to 0.099 S/cm at 80°C. The methanol diffusion coefficients of the SPAEK membranes were in the range of 4.7 × 10?7 to 8.1 × 10?7cm2/s measured at 25°C. The transport properties of this series of SPAEK copolymers were compared to poly(aryl ether ether ketone)s (SPEEK), poly(aryl ether ether ketone ketone)s (SPEEKK), and Nafion® membranes. It was found that the transport properties (including proton conductivity and methanol permeability) follows the trend of SPEEKK‐60 < SPAEK‐60 < SPEEK‐60 < Nafion® 117, the order of which is also attributed to the differences in the chemical structure of the polymers and the membrane morphology. In general, this novel series of SPAEK membranes possess various advantages, such as low cost of the initial monomers, high thermal and mechanical stability, and low methanol permeability while simultaneously possessing sufficient proton conductivity, which makes them notably promising as proton exchange membrane (PEM) materials in direct methanol fuel cell (DMFC) applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Mixed matrix membranes based on zeolite 4A‐methane sulfonic acid (MSA)‐sulfonated poly(ether ether ketone) (SPEEK) are evaluated as a potential polymer electrolyte membrane (PEM) for direct methanol fuel cells (DMFCs). Ion‐exchange capacity, sorption of water, and water–methanol mixture, proton conductivity, and methanol permeability for the mixed‐matrix membranes have been extensively investigated. The mixed‐matrix membranes are also characterized for their cross‐sectional morphology, mechanical, and thermal properties. DMFCs employing SPEEK‐MSA (20 wt.%) blend, zeolite 4A (4 wt.%)‐SPEEK‐MSA (20 wt.%) mixed matrix membranes deliver peak power densities of 130 and 159 mW cm–2, respectively; while a peak power density of only 95 mW cm–2 is obtained for the DMFC employing pristine SPEEK membrane at 70 °C. The results showed that these SPEEK based mixed matrix membranes exhibit higher DMFC performance and lower methanol permeability in comparison to Nafion‐117 membrane.  相似文献   

4.
Previous work showed the pertinence of using grafted porous silicon as the proton exchange membrane for miniature fuel cells. One of the limitations was the membrane‐electrodes assembly, which required an ionomer, in the current study a 5% Nafion®‐117 solution, to ensure a proton‐conducting link between the commercial carbon cloth electrodes and the membrane. Here, new developments for this fuel cell, with a totally Nafion®‐free process, are reported. The Pt catalyst is sputtered and electrodeposited onto the surface of the proton conducting porous silicon membrane. The initial performance of this fuel cell is shown and demonstrates the validity of the technique.  相似文献   

5.
A series of sulfonated poly(arylene ether sulfone) (PAES) were synthesized through direct aromatic nucleophilic substitution polycondensation of 3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (SDCDPS), 4,4-dichlorodiphenylsulfone (DCDPS) and 4,4-biphenol (BP). With increasing sulfonate groups in the polymer, water uptake, ion exchange capacity (IEC) and proton conductivities increased, resulting from enhanced membrane hydrophilicity. The membranes exhibited higher thermal stability up to 300 °C, verified by thermogravimetric analysis (TGA). A maximum proton conductivity of 0.11 S/cm at 50 mol% of sulfonation degree was measured at 30 °C, which is slightly higher than Nafion®117 membrane (0.0908 S/cm). However, the methanol permeability of the PAES membrane was much lower than that of Nafion®117 membrane. As a result, a single cell performance test demonstrated that PAES-BP with 50 mol% sulfonation degree exhibited higher power density than Nafion®117.  相似文献   

6.
Membrane electrode assemblies (MEAs) based on radiation‐grafted proton exchange membranes developed at PSI have shown encouraging performance in the past in hydrogen and methanol fuelled polymer electrolyte fuel cells. In this study, the effect of the pre‐treatment of crosslinked radiation‐grafted FEP membranes prior to lamination with the electrodes on the performance of the MEAs was investigated. Two approaches were assessed separately and in combination: (1) the impregnation of the radiation‐grafted membranes with solubilised Nafion®, and (2) the use of a swollen vs. dry membrane. It is found that the combination of coating the membrane with Nafion® ionomer and hot‐pressing the MEA with the membrane in the wet state produce the best single cell performance. In the second part of the study, the durability of an MEA, based on a radiation‐grafted FEP membrane, was investigated. The performance was stable for 4,000 h at a cell temperature of 80 °C. Then, a notable degradation of the membrane, as well as the electrode material, started to occur as a consequence of either controlled or uncontrolled start‐stop cycles of the cell. It is assumed that particular conditions, to which the cell is subjected during such an event, strongly accelerate materials degradation, which leads to the premature failure of the MEA.  相似文献   

7.
Two types of membranes, the sulfonated PEEK-WC (poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxyphenylene)(SPWC) and Krytox-Si-Nafion® (KSiN) composite membranes are proposed for DMFC applications.The properties based on water uptake, ion exchange capacity, proton conductivity, gas permeability, thermal stabilityand methanol crossover are summarized. The comparative studies on SPWC and Nafion® 117 membranes clarify us that the amorphous sulfonated PEEK-WC polymer shows thermal and mechanical stability with less methanol flux and gas permeability. The membrane also exhibits the increase in water uptake, ion exchange capacity and proton conductivity as sulfuric acid doping agent concentration was increased. The KSiN is unique in term of its miscible hybrid structure of silica particles modified with Nafion® structured Krytox 157 FSL chain (KSi) andNafion®. Based on the KSiN membranes with different KSi content, it was found that when KSi content increased, the reduction of gas permeability, methanol crossover and thermal stability are improved. The composite membrane performs the proton conductivity in the wide range of high temperature (60–130°C).  相似文献   

8.
Development of a direct methanol fuel cell (DMFC) mass flux model, using conventional transport theory, is presented and used to predict the fluid phase superficial velocity, methanol and water molar fluxes, and the chemical species (methanol and water) dimensionless concentration profiles in the polymer electrolyte membrane, Nafion® 117, of a DMFC. Implementation of these equations is illustrated to generate the numerical data as functions of the variables such as the pressure difference across the membrane, methanol concentration at the cell anode, temperature, and position in the membrane.  相似文献   

9.
A novel sulfonated polyimide/chitosan (SPI/CS) composite membrane was prepared from self‐made SPI (50% of sulfonation degree) through an immersion and self‐assembly method, which was successfully applied in vanadium redox flow battery (VRB). The proton conductivity of SPI/CS composite membrane is effectively improved compared to the plain SPI membrane. The VO2+ permeability coefficient across SPI/CS composite membrane is 1.12 × 10?7 cm2 min?1, which is only one tenth of that of Nafion® 117 membrane. Meanwhile, the proton selectivity of SPI/CS composite membrane is about eight times higher than that of Nafion® 117 membrane. In addition, the oxidative stability SPI/CS composite membrane is superior to that of pristine SPI membrane. The VRB single cell using SPI/CS composite membrane showed higher energy efficiency (88.6%) than that using Nafion® 117 membrane, indicating that SPI/CS composite membrane is a promising proton conductive membrane for VRB application. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
对直接甲醇燃料电池溶胶-凝胶流动相的制备工艺进行了分析,采用溶胶-凝胶法以正硅酸甲酯为前驱体制备出了溶胶-凝胶流动相.分别以溶胶-凝胶流动相和液体流动相为燃料对比研究了直接甲醇燃料电池的放电性能,测定了溶胶-凝胶流动相在Nation117膜中的甲醇渗透率,研究了溶胶-凝胶流动相的质子电导率.实验结果表明,使用溶胶-凝胶...  相似文献   

11.
C.Y. Du  W.W. Yang 《Electrochimica acta》2007,52(16):5266-5271
A half-cell consisting of a normal direct methanol fuel cell (DMFC) cathode and a membrane that contacts with an electrolyte solution was developed to investigate the effect of methanol crossover on the cathode behavior. Open circuit potentials, cyclic voltammetry profiles, polarization curves and electrochemical impedance spectroscopy (EIS), resulting from the oxygen reduction reaction (ORR) with/without the effect of methanol oxidation reaction (MOR), were measured. The transient measurements indicated that both current and open circuit potential of the electrode exhibited significant oscillations when the anodic MOR was superposed on the cathodic ORR, which explain the instabilities that may be encountered in the practical DMFC operation. The steady-state results confirmed that the presence of methanol at the cathode led to a significant poisoning effect on the ORR, especially when the DMFC operates at higher methanol concentrations and discharges at lower potentials. More importantly, the half-cell was proved to be ideal for the EIS study of DMFC electrodes because the system not only facilitates an accurate potential control but also reflects the actual mass transport process that occurs in practical DMFCs.  相似文献   

12.
In order to find a low cost polymer electrolyte membrane with low methanol cross-over, the development of novel polymer electrolytes have been actively carried out in recent time as alternatives to Nafion®, which is the state-of-the art membrane. The problems associated with these alternative membranes are higher permeability to the fuel, lower proton attraction and thermal stability. This work therefore was focused on synthesizing low methanol permeable membrane with good proton conductvity and thermal stability from locally available polymer (Polystyrene-butadiene rubber). Results obtained revealed that the synthesized membrane exhibited methanol permeation in the ranges of 2.13 × 10?7 to 7.58 × 10?7 mol/cm2s which was lower than that of Nafion® (3.15 × 10?6 cm2/s). The proton conductivity of the synthesized membrane is in the order of 10?2 S/cm. The results also show that water and solvent uptake of the synthesized membrane are moderate as compared to that of Nafion®. These results are influenced by the degree of sulphonation and membrane thickness ranging from 0.112 mm?0.420 mm.  相似文献   

13.
Zirconium hydrogen phosphate (ZrP)-silica nanocomposite polymer electrolyte membranes (PEMs) were prepared by sol-gel method in aqueous media. Hydrophilic and hydrophobic regions of PEMs were tailored by molecular level of architecture to introduce proton conducting pathways and methanol impervious nature. ZrP-silica nanocomposite PEMs showed improved thermal, mechanical, oxidative and hydrolytic stabilities along with high conductivity, methanol retention capacity, which are essential requirements. Furthermore, high degree of bound water content in membrane matrix indicates suitability of reported PEMs under anhydrous or low-humidity conditions. These PEMs were well processed as self-supporting film, and exhibited high selectivity parameter in comparison to Nafion117 membrane for direct methanol fuel cell (DMFC) applications.  相似文献   

14.
The direct methanol fuel cell (DMFC) has been discussed recently as an interesting option for a fuel‐cell‐based mobile power supply system in the power range from a few watts to several hundred kilowatts. In contrast to the favoured hydrogen‐fed fuel cell systems (e.g. the polymer electrolyte membrane fuel cell, PEMFC), the DMFC has some significant advantages. It uses a fuel which is, compared to hydrogen, easy to handle and to distribute. It also comprises a fairly simple system design compared to systems utilising liquid fuels (like methanol) to produce hydrogen from them by steam reforming or partial oxidation to finally feed a standard PEMFC. Nevertheless, many severe problems still exist for the DMFC, hindering its competitiveness as an option to hydrogen‐fed fuel cells. This work reviews the major research activities concerned with the DMFC by highlighting the problems (slow kinetics of the anodic methanol oxidation, methanol permeation through the membrane, carbon dioxide evolution at the anode) and their possible solutions. Special attention is devoted to the steady state and dynamic simulation of these fuel cell systems.  相似文献   

15.
Polymer electrolyte membranes have been widely investigated for high performance fuel cells. Here, we report the synthesis of ionic conductive Nafion/graphene oxide (GO) composite membranes for application in direct methanol fuel cells. GOs interact with both the non-polar backbone and the polar ionic clusters of Nafion because of their amphiphilic characteristics attributable to hydrophobic conjugation and hydrophilic functional groups. Accordingly, GO sheets serve to modify the microstructures of two domains of Nafion. In particular, the transport properties of Nafion are favorably manipulated by the incorporation of GO. This modulated the ionic channels of Nafion and decrease methanol crossover while preserving ionic conductivity. Furthermore, strong interfacial interactions due to the insertion of GO nanofillers into the Nafion matrix improve the thermal and mechanical properties of the material. In particular, we exploit Nafion/GO composite membrane as electrolyte material for direct methanol fuel cell (DMFC) in order to resolve current issue of methanol crossover. This composite membrane-based DMFC compared to the Nafion 112-based DMFC remarkably enhanced cell performance, especially in severe operating conditions.  相似文献   

16.
A simple electrochemical method for the measurement of the permeability of methanol in proton exchange membranes equilibrated with a supporting liquid electrolyte at elevated temperatures is proposed. Carbon supported platinum working electrodes are placed to both sides of the membrane sample and serve as concentration sensors. Methanol is added to one or both sides of the membrane and the permeability is calculated from the time responses of anodic peak currents on the two working electrodes. Experimental results are given for Nafion® 117 perfluorosulfonate membrane in 2.Om H2SO4 at 60 and 70°C.  相似文献   

17.
The extraction of nickel and cobalt from their sulfate solutions by electrodialysis in a modified three compartment cell is described. Two cation exchange membranes, the perfluorosulfonic Nafion® 117 and a new sulfonated PVDF membrane, are compared under similar operating conditions. The membranes are used as either flat structures or as corrugated structures. The effect of flow rate, current density, salt concentration and temperature on the performance of each membrane is described. The performance is characterised in terms of transport properties, current efficiencies and concentrations of metal ions transported through each membrane. The performance of the PVDF membrane was as good as; if not slightly better, than that of the commercial Nafion 117. A significant improvement with the use of corrugated membranes on the amounts of metal extracted is observed. The corrugated Nafion 117 membrane gave superior current efficiencies compared to the flat one with the same amount of charged passed. Separation of cobalt from nickel by electrodialysis in mixed solution has also been investigated.  相似文献   

18.
Nano-composites comprised of PtRu alloy nanoparticles and an electronically conducting polymer for the anode electrode in direct methanol fuel cell (DMFC) were prepared. Two conducting polymers of poly(N-vinyl carbazole) and poly(9-(4-vinyl-phenyl)carbazole) were used for the nano-composite electrodes. Structural analyses were carried out using Fourier transform nuclear magnetic resonance spectroscopy, AC impedance spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Electrocatalytic activities were investigated by voltammetry and chronoamperometry in a 2 M CH3OH/0.5 M H2SO4 solution and the data compared with a carbon-supported PtRu electrode. XRD patterns indicated good alloy formation and nano-composite formation was confirmed by TEM. Electrochemical measurements and DMFC unit-cell tests indicate that the nano-composites could be useful in a DMFC, but its performance would be slightly lower than that of a carbon-supported electrode. The interfacial property between the PtRu-polymer nano-composite anode and the polymer electrolyte was good, as evidenced by scanning electron microscopy. For better performance in a DMFC, a higher electric conductivity of the polymer and a lower catalyst loss are needed in nano-composite electrodes.  相似文献   

19.
A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip‐coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm–2 tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm–2 was reached under atmospheric air at 25 °C.  相似文献   

20.
New composite proton exchange membrane was prepared by mixing a 1‐methyl‐2‐pyrrolidone (NMP) solution of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in sodium form and brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) for hydrophilic‐hydrophobic balance, then casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were subsequently characterized using FTIR‐ATR, SEM‐EDXA, and TGA instrumentation as well as measurements of basic properties such as ion exchange capacity (IEC), water uptake, proton conductivity, methanol permeability, and single cell performance. Water uptake, IEC, proton conductivity, and methanol permeability all increased with a corresponding increase of SPPO content. By properly compromising the conductivity and methanol permeability, membranes with 60–80 wt % SPPO content exhibited comparable proton conductivity to that of Nafion® 117, with only half the methanol permeability, thereby demonstrating higher single cell performance. The membranes developed in this study could thus be a suitable candidate electrolyte for proton exchange membrane fuel cells (PEMFCs). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号