首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以木本中药渣为原料,采用浸渍法负载不同含量K2CO3催化剂;通过热重实验,分析中药渣催化热解特性和热解特征参数,并采用Starink法进行动力学分析,计算催化热解反应的表观活化能;使用固定床热解炉,优化催化热解反应条件,考察不同K2CO3负载量对热解产物分布的影响规律。热重结果表明,K2CO3能显著降低中药渣的初始热解温度和最大热解温度,从而降低热解快速失重段的反应活化能;且K2CO3负载量越大,催化热解效果越好。热解实验证实:K2CO3含量为中药渣催化热解反应的最主要影响因素,它可加速生物基大分子的低温解聚和热解中间产物的催化裂解,既可降低热解油产率,又能大幅提升H2、CO和C2H6等小分子低碳烃气体的产率,且有利于提高热解气的H2/CO比例。  相似文献   

2.
以杉木屑为原料,CO2为气化剂,熔融碳酸盐Li2CO3-Na2CO3-K2CO3(LNK)为热介质和催化剂进行气化制合成气(H2+CO)的研究,考察气化剂CO2流量、CO2通入方式、复合熔盐体系中添加的金属氧化物种类和Cr2O3含量等因素对气体产物组成分布及产率的影响。结果表明:CO2流量显著影响气化反应的平衡;以鼓泡法通入CO2时生物质的气化效果优于吹扫法的情况,CO2流量为99.8 L/h时气化效果较好,合成气含量和产率分别达到61.4%和350.2 mL/g生物质;添加的金属氧化物中Cr2O3对生物质气化过程的促进作用优于MgO和Fe2O3,随着Cr2O3含量的增大,合成气含量先增大后略微减小,在Cr2O3含量为10.0%时最高,为67.9%。  相似文献   

3.
搭建生物质与废塑料共气化动力学模型,并用实验数据对其进行验证。选用6种生物质和聚丙烯作为共气化反应物,以水蒸气为气化剂,计算气化温度在300~1000℃之间、气化压强在0.1~0.8 MPa之间、聚丙烯和松木锯末质量比例在0.5~2.5之间,以及不同生物质类型等对生物质和聚丙烯共气化产气特性的影响。结果表明:松木锯末气化中添加聚丙烯后,最高产气量和最大产气速率增加,最高产气总流量提高21.46%,最高产气速率提高4.64%,H2和CO最高产量分别提高54.27%和79.51%;压强增加不利于提高共气化产气的H2和CO含量,有利于提高CH4含量;6种常见生物质和聚丙烯共气化产氢量大小顺序为:果皮>棉花秆≈玉米秸秆>杨树木屑>稻秆>条浒苔;聚丙烯掺混比率增加有利于提高H2、CO和CH4等组分产量。  相似文献   

4.
采用热重分析法对CO2气氛下工业危废污泥与煤和废活性炭在不同比例下混合进行共气化的失重过程、气化反应动力学和协同气化效应进行了研究.随着混合燃料中煤/废活性炭比例的提高,混合燃料的失重率和最大失重速率都相应大幅提高.随气化温度升高,相比污泥单独气化,混合燃料的协同气化反应得以加强.60%污泥混合40%煤/活性炭时表现出更高的协同性指数,焦炭气化阶段的反应活化能为污泥单独气化时的24%~31%.与煤相比,废活性炭与污泥的协同气化效应更为显著.在此基础上利用管式气化实验炉对混合燃料的产气特性进行了初步研究.产气主要有效成分中CO体积占比最大,其次为H2和CH4.污泥单独气化时,产气中CO含量随CO2流量增加逐渐降低;与煤或废活性炭共气化时,CO含量则随CO2流量增大而逐渐增加.随煤和废活性炭混合比提高,H2、CH4含量逐渐上升,CO则相应降低.CO的含量整体受混合比和CO2流量共同影响.  相似文献   

5.
本文提出以Fe2O3为载氧体、以CaO捕集CO2的生物质化学链气化系统,利用Aspen Plus软件对该系统进行了模拟,以合成气组成(干基)、合成气氢碳比、含碳产物的碳摩尔分布、冷气效率及收率等为系统性能评价指标,重点分析了燃料反应器温度(TFR)、载氧体Fe2O3与生物质碳摩尔比(Fe2O3/C)、水蒸气与生物质碳摩尔比(Steam/C)、CaO与生物质碳摩尔比(CaO/C)等系统参数对固体生物质化学链气化系统的影响。结果表明,在TFR = 825℃、Fe2O3/C = 0.5、Steam/C = 0.71和CaO/C = 0.26条件下,合成气制备系统性能较优,合成气中H2和CO2含量分别为55.2%和15.4%,氢碳比为1.93,冷气效率为78.2%,被CaCO3捕集的生物质碳为18.2%,收率(湿气基)为1.95 Nm3/kgbiomass,其中合成气中H2和CO收率为1.24 Nm3/kgbiomass。  相似文献   

6.
进行高含氮木质废弃物的加压气化试验,研究反应压强对于气化的影响。结果表明:在高压热重上,高压可抑制挥发分析出,提高700℃以上气化反应速度,使气化结束温度从1104降至1076℃;在加压气流床装置上,增大压强可明显提高合成气的品质,CO与H2浓度明显增大,气化碳转化率、产气率与低位热值均有提高;随着压强的增大,高含氮木质废弃物气化产气中HCN与NH3浓度出现下降趋势,从4606和2405 mg/m3分别降至393和622 mg/m3。  相似文献   

7.
利用浸渍法和沉淀法分别制备了Ni/Al2O3(NiAlI)和Ni/白云石(NiDoP)两类生物质气化催化剂,采用氢气还原热重实验和固定床气化实验对两类催化剂进行性能验证,分析了催化剂制备方法、活性组分、还原温度、负载量、还原度、比表面积等因素对气化效果的影响。结果显示沉淀法制备的NiDoP中Ni以Mg0.4Ni0.6O固溶体形式存在,其适宜的还原温度范围为400~600℃,浸渍法制备的NiAlI中Ni以NiAl2O4形式存在,其适宜的还原温度范围为800~900℃。500℃还原后的20NiDoP较20NiAlI具有更好的催化性能,900℃时20NiDoPA催化下的氢产率达34mol/(kg daf),碳转化率达96%。添加5%K2CO3改性后的20NiDoP催化剂中,K2O在气化过程中起了显著的催化作用。此外,在生物质气化催化剂制备过程中需综合考虑比表面积和负载量的相互关系。  相似文献   

8.
文章针对基于LaFeO_(3)载氧体的木屑生物质化学链气化特性,开展了热力学过程模拟与分析,并搭建了固定床实验装置,研究了载氧体添加量(O/B)、气化温度和水蒸气量对合成气品质的影响。热力学分析结果表明:相比传统Fe_(2)O_(3)载氧体,LaFeO_(3)不易与合成气进一步反应,更适合生物质的化学链气化过程,且气化温度升高有利于提升合成气产率,增大LaFeO_(3)添加量也会促进合成气生成,而过多的Fe_(2)O_(3)则会进一步氧化合成气导致产气率下降;添加水蒸气可明显提高合成气中H2占比。实验结果表明,提高反应温度和载氧体添加量能够提高合成气品质,但过量水蒸气反而不利于合成气的转化。在O/B为0.6、气化温度为900℃、水蒸气流量为0.3mL/min的最佳工况下,基于LaFeO_(3)的木屑化学链气化过程的转化效率达到97.09%。研究成果可为生物质固废的能源化利用与推广提供科学依据。  相似文献   

9.
利用Aspen Plus 软件建立干桦木屑在下吸式固定床气化炉中的气化模型,模拟值与文献实验值吻合良好。利用Aspen Plus的灵敏度分析模块模拟分别以水蒸气(H2O)和二氧化碳(CO2)为气化剂时气化剂/生物质碳比(GC值)对气化结果的影响,并结合H2O、CO2各自的特点研究其复合气化。结果表明,H2O气化时可获得富氢煤气,但其净CO2排放量较高;CO2气化时碳转化率及冷煤气效率较低,但净CO2排放量较低;H2O、CO2复合气化使碳转化率及冷煤气效率略有降低,但可有效减少气化系统中的净CO2排放量。  相似文献   

10.
采用循环流化床气化中试装置对玉米秸秆进行了气化试验,分别在常温空气与250℃预热空气条件下,研究了空气当量比(ER)和原料含水率对气化特性的影响规律。结果表明:随着ER的增大,循环流化床气化炉内的反应温度升高,气化燃气中的CO2含量增加,焦油与CO含量及燃气热值降低,气化效率随ER的增大呈先增大后减小的趋势;随着气化原料含水率的增加,循环流化床气化炉内的平均温度下降,燃气中的CO2与H2及焦油含量逐渐升高,CO含量下降,CH4与CnHm含量均为先增加后减少。与常温空气工况相比,预热空气工况下的燃气热值与气化效率均有一定程度的提高。采用预热空气为气化介质,提高气化剂温度,可显著促进玉米秸秆的气化反应,提升气化效率。  相似文献   

11.
以小麦秆与印尼褐煤为原料,制备具有尖晶石结构的CuFe2O4复合氧载体,在自制多功能反应器上,系统研究了CuFe2O4氧载体反应活性及小麦秆和印尼褐煤化学链共气化特性,重点关注小麦秆和煤不同掺混比、气化温度、氧载体过量系数和水蒸气输入量这4个关键运行参数的影响。结果表明:CuFe2O4复合氧载体中Cu-Fe的协同作用有助于晶格氧的有效传递和反应活性的提升,而小麦秆和印尼褐煤化学链共气化时碳转化率及冷煤气效率比单一燃料的大,促进了高品质合成气的形成;小麦秆和褐煤在与CuFe2O4化学链气化过程中的最优运行参数为共气化温度950℃、氧载体过量系数0.2、水蒸气通入体积流量0.125 mL/min、小麦秆-印尼褐煤掺混质量比1∶1,在此最优条件下,合成气产量高达1.262 m3/kg, H2与CO体积比为1.69,碳转化率为89.7%,合成气选择性为63.2%。  相似文献   

12.
杨辉  陈文宇  孙姣  陈文义 《太阳能学报》2022,43(10):335-342
建立下吸式生物质气化炉热力学平衡模型,该模型包括焦炭、焦油和气体,并用已公布的实验数据对模型进行验证,均方根(RMS)在1.304~3.814之间,结果表明该模型的预测值与实验数据吻合较好,可认为模型可靠。然后模拟棉秆在下吸式生物质气化炉中以空气和富氧气体2种气化氛围下,不同操作参数(当量比、预热温度和气化炉反应温度)下对棉秆气化的气体组分、热值和产率的影响。模拟结果表明:富氧气体为气化剂时,当量比从0.20增至0.35时,气体中N2含量比空气显著下降,达10%以上,同时发现能提高气体中H2和CO的含量和热值,热值比空气提高约20%。预热温度对气化成分变化影响有限,随预热温度从30 ℃变化到130 ℃,气体的平均热值从空气的5.2 MJ/m3提高到富氧气体的7.0 MJ/m3。随气化炉内反应温度从750 ℃升至1250 ℃,空气和富氧气体2种气化剂下的H2和CO分别从20.94%、26.84%和21.77%、28.67%下降到4.06%、9.12%和10.49%、21.60%,导致气体的热值降低。  相似文献   

13.
对生物质气化中试现场产生的废水进行了水质及水量特征分析,针对生物质气化工艺废水固体颗粒含量高、有机物浓度高、难生化降解、废水增量少的特点,采取减压蒸馏及芬顿氧化对生物质气化废水进行预处理。实验结果表明,在85 ~ 90℃、真空度 -0.07 ~ -0.095 MPa减压蒸馏条件下,废水COD、NH4-N脱除率分别为74.38%、94.46%;在Fe2+-H2O2体系中,考察了H2O2与废水质量比、H2O2与Fe2+摩尔比、反应时间、H2O2浓度对COD、NH4-N、TOC、TN等的影响,当H2O2与废水质量比为8.40%时,可将减压蒸馏蒸出液COD从2.05 × 104 mg/L降至4.11 × 103 mg/L,NH4+-N从143 mg/L降至11.1 mg/L。  相似文献   

14.
以空气为气化介质,在中型管式布风流化床(截面积300×300mm2,高5m)反应器上考察了二次风的加入(占一次风比例的0-40%)对生物质(木屑)气化效果、二次反应和焦油产率的影响。在进料量39kg/h,一次进风量50Nm3/h条件下进行。实验结果表明,加入二次风显著改变了碳转化率、气化效率和焦油产率,而对二次反应影响不大。得到最佳二次配风比为30%,此时,燃气低热值为5453kJ/m3,产气率、碳转化率和气化效率分别为2.46m3/ kg、97%和85%;焦油含量降低了约62.6%。  相似文献   

15.
选取稻壳、木屑、小麦秸秆及玉米秸秆四种典型生物质及木质素,以管式炉为反应器,将每种实验样品3 g放入陶瓷方舟,通入0.4 MP、150℃的水蒸气,流量为3 g/min,选取550℃、650℃、750℃、850℃、950℃进行水蒸气气化实验,探究典型生物质水蒸气气化产物、热值及固体转化率随温度变化规律。实验结果表明:木屑产生H2含量在750℃可达60.17%。提高水蒸气气化温度可以有效降低CH4含量,提高H2的体积分数。在实际工程应用时,如果要获得较高的氢气纯度,温度至少在750℃以上;如果使可燃气含量最高时,建议将温度控制在750℃左右。  相似文献   

16.
采用一种14组分37步简化机理模型、RNG k-ε湍流模型以及稳态层流小火焰(SLF)燃烧模型,研究了N2稀释条件下组分H2/CO的比例对合成气燃烧特性的影响。数值模拟结果表明:当组分H2/CO的体积比从3:7变化至7:3时,合成气燃烧过程中生成的OH自由基浓度上升,燃烧位置向入口靠近;火焰燃烧峰值温度随H2/CO体积比的增大而下降,火焰峰值温度所在位置向燃料入口靠近;火焰传播速度随H2/CO体积比的增大而加快,燃烧反应在更短的距离和时间内完成。  相似文献   

17.
采用水热法制备三维Ni-Al纳米结构催化剂,并利用多种表征手段和稻壳催化热解实验研究焙烧温度(500~800 ℃)对催化剂的整体结构及催化性能的影响。结果表明:催化剂为球状结构,活性位点分布均匀,焙烧温度对材料结构有显著影响,800 ℃焙烧条件下球状结构有向内塌陷的趋势。相较于无催化条件下的稻壳热解产物,催化热解后焦油产率明显减小,产气量大幅提高。500 ℃焙烧制备的Ni-Al催化剂作用条件下,稻壳热解气体产物中H2/CO最大可达2.66,600 ℃焙烧条件下可获得最大合成气产量737 mL/g,而700 ℃焙烧条件下可获得最低的焦油产率(13.5%)。材料表征发现,反应后的催化剂仍具有稳定的球状结构与活化性能。  相似文献   

18.
对浙江省某地25 t/d的生活垃圾气化炉进行了检测研究,通过分析得到原生垃圾气化实际工况下,洁净合成气热值为1947 kJ/m3,干合成气的产量为1969 m3/t;焦油热量占气化炉出口合成气热量比例为29.5%;合成气中含水率为28.17%,对入炉垃圾进行脱水提质有助于提高合成气产量和品质;垃圾气化联合燃烧系统污染物排放浓度较低,在未使用烟气净化系统时CO、NOx和SO2已能实现达标排放。分析认为,气化技术能实现生活垃圾能源化清洁利用,未来应用前景广阔。  相似文献   

19.
以空气为气化介质,研究中药废渣在气化反应器中的原位催化气化特性。结果表明:当量比为0.23,气化温度为600~750℃,钴催化剂加入量为添加2%(质量分数)时,气化燃气组分体积分率分别为:H_2 23%、CO 21%、CH_4 4%,产气量为1.537 Nm~3/kg。收集洗液GC-MS分析结果表明:洗液中未发现焦油组分;使用前后的催化剂活性组分的X射线衍射(XRD)和表面形貌分析(SEM)分析表明,原位催化裂解后的催化剂上未发现积碳。  相似文献   

20.
采用碱性过氧化氢(AHP)体系对慈竹进行预处理,研究过氧化氢(H2O2)用量对竹材化学组分及酶水解得率的影响。利用X射线衍射(XRD)和傅里叶变换红外光谱仪(FTIR)分析预处理前后物料的物理和化学结构变化,采用二维核磁共振技术研究预处理物料中剩余木质素的化学结构。结果表明:AHP预处理过程中,随着H2O2用量(质量分数)的增加,竹材的葡聚糖含量(相对质量百分比)先增加后减少,木聚糖含量基本不变,而木质素含量整体呈减少趋势。AHP预处理能显著提升竹材的酶解效率,在纤维素酶用量为15 FPU/g葡聚糖,H2O2用量为7.0%时,预处理竹材的酶水解性能最高,葡聚糖和木聚糖酶水解得率分别为93.9%和100%。研究发现,慈竹木质素脱除率在H2O2用量达到2.0%后趋于稳定,为68.8%,继续增加H2O2用量,木质素脱除率无明显提升,对预处理竹材中剩余木质素进行2D-HSQC核磁分析,这部分难以脱除的木质素的化学结构为:64%的S单元、33.7%的G单元和61.6%的β——O——4键,其中S/G值为1.90。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号