首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Cells from mice with mutations in the genes for beta2-microglobulin (beta2m) or for TAP-1 express only low levels of MHC class I proteins on their surfaces, and are thus sensitive to attack by normal NK cells. Although NK cells are present in beta2m- mice and TAP-1(-) mice, they are completely self-tolerant. The underlying mechanism for this tolerance is unknown. It has been proposed that education processes render NK cells from these mice hypersensitive to class I-mediated inhibition, so that they can be inhibited even by the low levels of class I expressed on autologous cells. In this study, we present evidence against this hypothesis, by demonstrating that NK cells from beta2m- mice and TAP-1(-) mice fail to attack beta2m(-)TAP-1(-) double-mutant cells in both in vitro and in vivo assays. The latter cells express substantially lower levels of class I than single-mutant cells, based on serologic tests, as well as a significantly diminished sensitivity to attack by class I-specific CTL. Furthermore, the Ly-49 repertoire on NK cells derived from beta2m(-)TAP-1(-) mice is highly similar to that of either single mutant, indicating that the developmental processes that shape the Ly-49 repertoire cannot respond to the differences in class I levels among these mice. We propose that self-tolerance of NK cells in beta2m- mice and TAP-1(-) mice is likely to result from hyporesponsiveness of the cells to activating signals, or alternatively, to induction of inhibitory signaling through receptors specific for non-class I MHC ligands.  相似文献   

2.
The expression of certain major histocompatibility complex (MHC) class I ligands on target cells is one important determinate of their susceptibility to lysis by natural killer (NK) cells. NK cells express receptor molecules that bind to MHC class I. Upon binding to their MHC class I ligand, the NK cell is presumed to receive a signal through its receptor that inhibits lysis. It is unclear what role the MHC class I molecules of the effector and target cells play in signaling to the NK cell. We have investigated the role of the cytoplasmic and transmembrane domains of MHC class I molecules by producing a glycosylphosphatidylinositol (GPI)-linked H-2Dd molecule. The GPI-linked H-2Dd molecule is recognized by H-2Dd-specific antibodies and cytotoxic T lymphocytes. Expression of the GPI-linked H-2Dd molecule on H-2b tumor cells resulted in protection of the tumor cells after transplantation into D8 mice (H-2b, H-2Dd) from rejection by NK cells. In addition, NK cells from mice expressing the GPI-linked H-2Dd molecule as a transgene were able to kill nontransgenic H-2b lymphoblast target cells. The GPI-linked MHC class I molecule was able to alter NK cell specificity at the target and effector cell levels. Thus, the expression of the cytoplasmic and transmembrane domains of MHC class I molecules are not necessary for protection and alteration of NK cell specificity.  相似文献   

3.
Con A-induced hepatic injury of mice accompanied by elevated transaminase was inhibited after in vivo depletion of liver NK cells and NK1+ T cells with intermediate TCR by anti-NK1 Ab or anti-IL-2Rbeta Ab. However, depletion of liver NK cells alone by anti-asialo-GM1 Ab did not inhibit hepatic injury. Although depletion of NK1+ T cells inhibited Con A-induced IL-2R expression of CD4+ high TCR (TCRhigh) cells and IL-4 mRNA expression of hepatic mononuclear cells, exogenous IL-4 engendered Con A-induced hepatic injury and endowed the expression of IL-2R of CD4+ TCRhigh cells. It was also found that in vivo treatment with anti-IL-4 Ab before Con A administration inhibited Con A-induced hepatic injury. In addition, although Con A did not induce hepatic injury in MHC class I-deficient mice, exogenous IL-4 again engendered severe hepatic injury in these mice. Further, while serum TNF-alpha levels induced by Con A were greatly decreased in NK1+ T cell-depleted mice and class I-deficient mice, TNF-alpha levels were recovered by exogenous IL-4. These findings reveal that although CD4+ TCRhigh cells in the liver and their production of TNF-alpha are the direct effectors of Con A-induced hepatic injury, liver NK1+ T cells also play an important role in this hepatitis model. Con A hepatitis may serve as an experimental model for human autoimmune hepatitis.  相似文献   

4.
Major histocompatibility complex (MHC) class I molecules are trimolecular complexes consisting of a heavy chain (HC), beta2-microglobulin (beta2m), and a short peptide. Assembly of MHC class I molecules is thought to take place early during biosynthesis. Deficiency in either beta2m or the transporter associated with antigen processing (TAP) results in accumulation of class I molecules in the endoplasmic reticulum (ER). In this study, we have assessed peptide binding to TAP and MHC class I in purified microsomes derived from wild-type, TAP1(-/-), beta2m-/-, and TAP1/beta2m-/- mice using a cross-linkable H-2Kb-binding peptide. This enabled us to study the influence of an intact TAP complex and beta2m on peptide binding to MHC class I and to analyze the stepwise interaction of peptide with TAP and MHC class I molecules. Peptide bound both immature and mature (terminally glycosylated) class I molecules in intact as well as permeabilized microsomes from wild-type mice. Efficient peptide binding to immature class I molecules was also detected in permeabilized microsomes from TAP1(-/-) mice. In contrast, no peptide binding to beta2m-free HC was detected in permeabilized microsomes from beta2m-/- and TAP1/beta2m-/- mice. However, the addition of exogenous beta2m allowed peptide binding to class I in permeabilized beta2m-/- and TAP1/beta2m-/- microsomes. These results demonstrate that a preformed class I HC middle dotbeta2m heterodimer is necessary for efficient peptide binding under physiological conditions. The observed peptide binding to class I in permeabilized TAP1(-/-) microsomes further suggests that TAP1 is not required for peptide binding to class I in the ER. Finally, kinetic studies allowed the demonstration of a stepwise binding of peptide to TAP, subsequent translocation across the ER membrane, a step that required ATP hydrolysis, and binding of peptide to preformed class I HC.beta2m heterodimers.  相似文献   

5.
We have investigated the capacity of human MHC class I HLA-B gene products, HLA-B27, -B7 (fully human), and -B7kb (human-mouse hybrid consisting of the alpha1 and alpha2 domains of HLA-B7, and the alpha3 and cytoplasmic domains of mouse H-2Kb), expressed on mouse NK cells during ontogeny to influence NK recognition of otherwise syngeneic mouse target cells. Despite a high level of surface expression of the transgene (comparable to that of endogeneous H-2DbKb molecules), the direct killing of YAC-1 targets, and the killing of P815 targets in a redirected lysis assay, the NK effectors of these transgenic mice could not mediate hybrid resistance-like killing of nontransgenic C57BL/6 target cells either in vitro or in vivo. Splenocytes from B6-B27 mice could be used to generate CTL lines against a B27-binding peptide, implying that T cells restricted by HLA-B27 developed during ontogeny. NK cells from B6-B27 could lyse B6-B27 Con A lymphoblasts pulsed with Db-binding peptide but not B27-binding peptides. Taken together, our results show that these human HLA-B transgene products cannot function as class I MHC "self" elements for mouse NK cells, even when present throughout ontogeny.  相似文献   

6.
beta 2-Microglobulin knockout mice (beta 2-m-/-) with MHC class I expression deficiency are able to develop functional TCR(+)-alpha beta, CD8+ CTLs in response to tumor cell injection. The i.p. injection of beta 2-m-/- mice with tumor results in the massive accumulation of highly lytic CD8+ CTLs in the peritoneum and causes the local recruitment of CD8+ T cells into lymph nodes and spleens of immune animals. The accumulation of CD8+ CTLs in peritoneum is accompanied by the rejection of tumor cells and the survival of animals. The deficiency in MHC class I expression in beta 2-m/- mice is reflected in the delayed tumor rejection and CD8+ cell accumulation during the primary anti-tumor response in comparison with normal mice. The secondary response, however, is identical in normal and MHC class I-deficient mice. The rejection of tumor cells appears to be MHC class I directed because no rejection of tumors, no accumulation of CD8+ CTLs, and no survival of animals were observed when syngeneic tumor cells were used for injection with the notable exception of anti-minor Ag response. The Ag specificity of CD8+ CTLs in beta 2-m-/- mice is demonstrated using a panel of tumor target cells and class I transfectants. Although no substantial differences were found in the number and specificity of peritoneal CD8+ CTLs in beta 2-m-/- and normal mice using tumor rejection studies, the analysis of TCR-V beta phenotype using the panel of mAbs revealed the reduction in proportion of TCR-V beta 5 and TCR-V beta 6 used by CD8+ cell population from beta 2-m-/- mice. Development of lytic and H-2-directed CD8+ cells in regional lymph nodes was also observed after footpad immunization of beta 2-m-/- mice with TNP-labeled C57BL/6 splenocytes, suggesting anti-minor Ag reaction.  相似文献   

7.
Although activation of natural killer (NK) cytotoxicity is generally inhibited by target major histocompatibility complex (MHC) class I expression, subtle features of NK allorecognition suggest that NK cells possess receptors that are activated by target MHC I. The mouse Ly-49D receptor has been shown to activate NK cytotoxicity, although recognition of MHC class I has not been demonstrated previously. To define Ly-49D-ligand interactions, we transfected the mouse Ly-49D receptor into the rat NK line, RNK-16 (RNK.mLy-49D). As expected, anti- Ly-49D monoclonal antibody 12A8 specifically stimulated redirected lysis of the Fc receptor- bearing rat target YB2/0 by RNK.mLy-49D transfectants. RNK.mLy-49D effectors were tested against YB2/0 targets transfected with the mouse MHC I alleles H-2Dd, Db, Kk, or Kb. RNK.mLy-49D cells lysed YB2/0.Dd targets more efficiently than untransfected YB2/0 or YB2/0 transfected with Db, Kk, or Kb. This augmented lysis of H-2Dd targets was specifically inhibited by F(ab')2 anti-Ly-49D (12A8) and F(ab')2 anti-H-2Dd (34-5-8S). RNK.mLy-49D effectors were also able to specifically lyse Concanavalin A blasts isolated from H-2(d) mice (BALB/c, B10.D2, and DBA/2) but not from H-2(b) or H-2(k) mice. These experiments show that the activating receptor Ly-49D specifically interacts with the MHC I antigen, H-2Dd, demonstrating the existence of alloactivating receptors on murine NK cells.  相似文献   

8.
The inoculation into mice of genetically engineered tumour cells that secrete IL-2 or IFN gamma results in rejection, while unmodified parental tumour cells grow progressively. In vivo studies demonstrated synergy between IL-2 and IFN gamma leading to the rejection of the transduced tumour cells. IL-2 is required for T cell proliferation and differentiation. IFN gamma induced the upregulation of MHC class I molecules that present peptides to CD8+ T cells. Furthermore, IFN gamma can correct defects in antigen processing. Thus, for T cells, IL-2/IFN gamma-secreting double cytokine tumour cell vaccines might serve as class I+ peptide/antigen presenting depots for developing effector cells. In contrast to T cells, NK cells exert spontaneous killing and kill class I+ targets less well than those that are class I-. For this reason, they may actually have a detrimental effect by destroying a class I+ tumour cell vaccine before adequate T cell stimulation occurs. Based upon this rationale, we tested the hypothesis that an unrecognised benefit of increased class I expression by tumour cells in response to IFN gamma secretion would be to enable cytokine-secreting vaccine cells to resist destruction by NK cells. Our results demonstrated that T cells recognised tumour cells secreting IFN gamma better than those secreting IL-2. NK cells, in contrast, were inhibited by tumour cells that secreted IFN gamma, but not by those that secreted IL-2. The findings suggest that, in addition to upregulating adhesion molecules, MHC molecules, and correcting defects in antigen presentation pathways, IFN gamma secretion may protect tumour cell vaccines from early NK-mediated destruction, keeping them available for T cell priming.  相似文献   

9.
Expression of the H-2Dd-specific inhibitory receptor Ly49A on murine NK cells is subject to MHC class I-dependent modulation in vivo. As a result, NK cells in H-2Dd-transgenic mice express low cell surface levels of Ly49A, whereas NK cells from nontransgenic C57BL/6 (B6) mice express high levels. The purpose of this study was to assess the role of MHC class I molecules on the NK cell itself vs those on surrounding cells in this calibration and to test whether the Ly49A levels are subject to regulation in mature NK cells also. Analysis of transgenic mice with mosaic expression of an H-2Dd/Ld transgene showed that MHC class I molecules on surrounding cells (external ligands) and on the NK cell itself (internal ligands) played distinct roles in the determination of Ly49A levels. External ligands were involved in down-regulation of Ly49A levels in vivo, whereas internal ligands kept the down-regulated levels of Ly49A low upon NK cell activation in vitro. Furthermore, in an experimental system based on adoptive transfer of spleen cells, receptor down-regulation of Ly49A occurred as a rapid adaptation process in mature NK cells after interaction with the H-2Dd ligand in vivo. This suggests that Ly49 levels are not fixed but can be changed in mature NK cells when they are exposed to a changed MHC class I environment.  相似文献   

10.
Introduction of the MHC class I transgene H-2Dd on C57BL/6 (B6) background conveys NK cell-mediated "missing self" reactivity against transgene-negative cells, and down-regulates expression of the inhibitory receptors Ly49A and Ly49G2 in NK cells. We here present an analysis of transgenic mice expressing chimeric H-2Dd/Ld MHC class I transgenes, and show that the alpha1/alpha2 domains of H-2Dd were necessary and sufficient to induce "missing self" recognition and to down-modulate Ly49A and Ly49G2 receptors. In contrast, transgenes containing the alpha1/alpha2 domains of H-2Ld induced none of these changes, suggesting that not all MHC class I alleles in a host necessarily take part in NK cell education. The lack of effect of the alpha1/alpha2 domains of H-2Ld on NK cell specificity was surprising, considering that both H-2Ld and H-2Dd have been reported to interact with Ly49G2. Therefore, the role of H-2Ld for protection against NK cells expressing Ly49G2 was re-investigated in a transfection system. In contradiction to earlier reports, we show that H-2Dd, but not H-2Ld, abolished killing by sorted Ly49G2+ NK cells, indicating that H-2Ld does not inhibit NK cells via the Ly49G2 receptor.  相似文献   

11.
12.
Ly-49 molecules are used by NK cells to distinguish 'self' from 'non-self', but the determinants of Ly-49 expression that allow this distinction to be made are not understood. The education of NK cells for self/non-self recognition was studied in murine mixed allogeneic bone marrow chimeras, in which NK cells are of both host and donor origin. Marked alterations in Ly-49 receptor expression were observed on both host and donor NK cells developing in BALB/c --> B6 mixed chimeras. Ly-49A and Ly-49G2 expression was lower on host B6 NK cells of mixed chimeras compared to non-transplanted B6 controls. Among donor BALB/c NK cells, Ly-49C expression levels were reduced, but the proportion of Ly-49C+ cells was increased, whereas Ly-49G2 expression was up-regulated compared to non-transplanted BALB/c controls. Thus, Ly-49 expression on donor and host NK cells developing post-bone marrow transplantation evolves toward the expression pattern of the host and donor strains respectively, due to the presence of the allogeneic MHC. In vitro functional NK cell assays showed that donor NK cells in mixed chimeras were not tolerant to host antigens and that host NK cells were not tolerant to the donor. Our data are consistent with a model in which MHC expression in the environment has a dominant down-regulating effect on the expression of Ly-49 molecules that recognize those MHC molecules, regardless of whether they are self or allogeneic. This down-regulation, combined with the limited repertoire of Ly-49 molecules, may not be sufficient to allow NK cells to be tolerant of MHC antigens of a fully MHC-mismatched allogenic strain.  相似文献   

13.
Although T cells are educated to recognize foreign antigenic peptides in the context of self MHC molecules during their development in the thymus, peripheral T cells also recognize allo- and xeno-MHC molecules. The lower frequency of xeno-MHC-reactive T cells than that of allo-MHC-reactive T cells is often explained by the difference in the degree of homology between xeno- or allo-MHC and self MHC molecules, as well as by the species barrier of the molecules involved in immune recognition. To distinguish these two possibilities, we estimated the frequency of I-Ab-reactive CD4+ T cells selected by HLA-DQ or DR alpha E beta b molecules, using HLA-DQ6 and HLA-DRA transgenic C57BL/6 (B6) mice lacking endogenous MHC class I and/or class II molecules (DQ6A0/0 and DR alpha 30A0/0 beta 20/0). CD4+ lymph node T cells from DQ6A0/0 and DR alpha 30A0/0 beta 20/0 showed the strong proliferative response to I-Ab molecules. In addition, DQ6A0/0 and DR alpha 30A0/0 beta 20/0 rejected the skin graft from mice expressing I-Ab molecules irrespective of MHC class I expression, indicating that the CD4+ T cells recognizing I-Ab molecules are directly involved in this rejection. The estimated frequency of I-Ab-reactive CD4(+)CD8- thymocytes in DR alpha 30A0/0 beta 20/0 and DQ6A0/0 was comparable with that observed in the MHC class II-disparate strains. Our findings thus indicate that CD4+ T cells selected to mature on xeno-MHC class II molecules such as HLA-DQ6 or DR alpha E beta b, when these molecules are expressed in mice, recognize I-Ab molecules as allo-MHC class II, despite the less structural homology.  相似文献   

14.
Intravenous infusion of mice with viable allogeneic lymphocytes can produce donor-specific enhancement of skin graft survival, but only if the injected lymphocytes can persist in the host's recirculating lymphocyte pool for at least 3 days. We have investigated the relative roles of class I and class II MHC for C57BL/6 mice infused with lymphoid cells from co-isogenic strains mutated at class I MHC (bm1) or class II MHC (bm12), and for A.TH lymphoid cells infused into C3H (class I different, class II identical) or A.TH (class II different, class I identical). Injected cells differing from the host at class I MHC, but not at class II MHC, can be rapidly removed by host natural immune mechanisms (probably NK cells). Persistence is favored if the injected cells also carry host class I MHC, i.e., tolerance is more readily induced by injecting F1 (A x B) into A rather than B into A, consistent with the "missing self" hypothesis of NK recognition, with class I MHC being the relevant self-marker. Injected cells differing from the host at class II MHC but not at class I MHC always persist for at least 3 days, even when class I-different cells are being actively removed.  相似文献   

15.
Recent studies on human NK cells have demonstrated that the NK cell CD94/NKG2 receptors bind to the nonclassical MHC class I molecule HLA-E. A functional CD94/NKG2 complex has not yet been identified in rodents, but cDNA encoding rat and mouse CD94 and NKG2 have recently been cloned, suggesting that CD94/NKG2 receptors may exist in species other than man. The mouse nonclassical MHC class I molecule Qa-1 shares several features with HLA-E. This suggests that Qa-1 may be similarly recognized by murine NK cells. To study the ability of Qa-1 to bind to murine NK cells, we have produced a soluble tetrameric form of Qa-1b. In the present study, we demonstrate that Qa-1b tetramers distinctly bind to a large subset of fresh or IL-2-activated NK1.1+/CD3- splenocytes independently of the expression of Ly49 inhibitory receptors. Binding occurs whether NK cells have evolved in an MHC class I-expressing or in an MHC class I-deficient environment. Our data suggest the existence of a Qa-1-recognizing structure on a large subpopulation of murine NK cells that may be similar to the human CD94/NKG2 heterodimeric complex.  相似文献   

16.
Natural killer (NK) cells preferentially lyse targets that express reduced levels of major histocompatibility complex (MHC) class I proteins. To date, the only known mouse NK receptors for MHC class I belong to the Ly49 family of C-type lectin homodimers. Here, we report the cloning of mouse NKG2A, and demonstrate it forms an additional and distinct class I receptor, a CD94/NKG2A heterodimer. Using soluble tetramers of the nonclassical class I molecule Qa-1(b), we provide direct evidence that CD94/NKG2A recognizes Qa-1(b). We further demonstrate that NK recognition of Qa-1(b) results in the inhibition of target cell lysis. Inhibition appears to depend on the presence of Qdm, a Qa-1(b)-binding peptide derived from the signal sequences of some classical class I molecules. Mouse NKG2A maps adjacent to CD94 in the heart of the NK complex on mouse chromosome six, one of a small cluster of NKG2-like genes. Our findings suggest that mouse NK cells, like their human counterparts, use multiple mechanisms to survey class I expression on target cells.  相似文献   

17.
GVHD is a major complication in allogeneic bone marrow transplantation (BMT). MHC class I mismatching increases GVHD, but in MHC-matched BMT minor histocompatibility antigens (mH) presented by MHC class I result in significant GVHD. To examine the modification of GVHD in the absence of cell surface MHC class I molecules, beta2-microglobulin-deficient mice (beta2m(-/-)) were used as allogeneic BMT recipients in MHC- and mH-mismatched transplants. Beta2m(-/-) mice accepted MHC class I-expressing BM grafts and developed significant GVHD. MHC (H-2)-mismatched recipients developed acute lethal GVHD. In contrast, animals transplanted across mH barriers developed indolent chronic disease that was eventually fatal. Engrafted splenic T cells in all beta2m(-/-) recipients were predominantly CD3+alphabetaTCR+CD4+ cells (15-20% of all splenocytes). In contrast, CD8+ cells engrafted in very small numbers (1-5%) irrespective of the degree of MHC mismatching. T cells proliferated against recipient strain antigens and recognized recipient strain targets in cytolytic assays. Cytolysis was blocked by anti-MHC class II but not anti-CD8 or anti-MHC class I monoclonal antibodies (MoAbs). Cytolytic CD4+ T cells induced and maintained GVHD in mH-mismatched beta2m(-/-) mice, supporting endogenous mH presentation solely by MHC class II. Conversely, haematopoietic beta2m(-/-) cells were unable to engraft in normal MHC-matched recipients, presumably due to natural killer (NK)-mediated rejection of class I-negative cells. Donor-derived lymphokine-activated killer cells (LAK) were unable to overcome graft rejection (GR) and support engraftment.  相似文献   

18.
In this study we have investigated the role of CD4+, MHC class II-restricted cytotoxic T lymphocytes (CTLs) in the disease caused by lymphocytic choriomeningitis virus (LCMV) in beta 2-microglobulin deficient (beta 2m-) mice. Intracranial (i.c.) infection with LCMV resulted in death of six out of 11 beta 2m- mice. Mice that survived showed a marked loss in body weight. Death and loss of body weight could be prevented by immunosuppressing the mice with irradiation or cyclosporine prior to i.c. injection of LCMV. This treatment also prevented induction of virus-specific, MHC class II-restricted CTL following peripheral inoculation with LCMV. In vivo depletion of CD4+ cells with antibody also prevented death following i.c. injection whereas in vivo depletion of CD8+ cells had no effect. Disease could be transferred to recipient beta 2m- mice by adoptive transfer of beta 2m- derived immune spleen cells. Transfer of non-immune spleen cells did not result in illness. In vitro treatment of immune spleen cells with anti-CD4 antibody and complement eliminated class II-restricted CTL activity and also prevented mortality of recipients after adoptive transfer. Treatment with anti-CD8 antibody had no effect. We were unable to transfer LCM disease to beta 2m- recipients by adoptive transfer of immune spleen cells from C57BL/6 mice. These results suggest that, unlike normal mice, the pathology of LCM disease in beta 2m- mice is dependent upon virus-specific, CD4+CD8-, MHC class II-restricted T cells.  相似文献   

19.
The murine Ly-49 antigen belongs to a family of type II transmembrane molecules containing lectin-like domains. The original member of this family, Ly-49A, has been demonstrated to be expressed by a subpopulation of natural killer (NK) cells, bind certain class I major histocompatibility complexes (MHC), and act as a negative regulator of lytic activity. The expression patterns and functional activities of the other Ly-49s, however, is unknown. We extended the study of this family by isolating cDNAs encoding two new Ly-49 molecules. The reactivity of these and previously identified Ly-49 molecules with NK antibodies was tested in a COS cell expression system. YE1/32 and YE1/48 bound Ly-49A specifically, and 5E6 reacted only with Ly-49C. Three-color flow cytometric analysis demonstrated Ly-49A and Ly-49C expression defines complex, but distinct subsets within NK1.1+ cells. Some NK1.1-CD3+ as well as NK1.1-CD3- cells expressing Ly-49A or C were also detected. Analysis of MHC congenic strains of mice demonstrated that YE1/32+ and YE1/48+ NK cells are not deleted, as has been shown with the Ly-49A mAb A1. Furthermore, COS cells transfected with Ly-49A bound H-2d and H-2k cell lines, whereas Ly-49C transfectants bound H-2d, H-2k, H-2b, and H-2s. The antibodies 5E6 and 34-1-2S (anti-class I MHC) inhibited the binding of Ly-49C to an H-2s cell line. These results imply that the NK cell antigens Ly-49A and C bind to different repertoires of class I MHC molecules.  相似文献   

20.
NK cells selectively lyse tumor cells which do not express one or more MHC class I alleles. The ability to discriminate between self normal or tumor cells is due to the expression of MHC class I-specific killer inhibitory receptors (KIR). In the present study we analyzed melanoma cell lines which were highly susceptible to NK cell-mediated lysis in spite of the expression of a complete set of HLA class I alleles. Quantitative analysis of the HLA class I expression using allele-specific monoclonal antibodies (mAb) revealed a down-regulation of all HLA class I molecules. Treatment of melanoma cells with IFN-gamma resulted in up-regulation of all HLA class I alleles that was paralleled by the acquisition of resistance to lysis. That resistance to lysis reflected the up-regulation of HLA class I molecules was revealed by the finding that mAb-mediated masking of either KIR or their HLA class I ligands completely restored the melanoma cell lysis. These results were obtained by the use of selected NK cell clones derived either from allogeneic or autologous donors. In addition, similar results were obtained using in vitro expanded autologous NK cell populations. Our data indicate that NK cells can lyse not only melanoma cells which have lost the expression of one or more HLA class I alleles but also cells expressing a decreased amount of class I molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号