首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Magnetotelluric and geomagnetic depth soundings have been carried out in the area of the Travale high enthalpy geothermal field (central Tuscany, Italy) in 1980 and 1981 to study the distribution of electrical conductivity in the geothermal anomaly and the crust beneath. Within this project the possible contributions of electromagnetic investigations to geothermal research were to be tested and a geothermal model of the Travale area was to be developed. The time-varying electric and magnetic fields have been recorded in a broad period range from 6–10,000 s, mainly on two profiles, the one parallel, the other perpendicular to the Travale graben. Strong lateral variations of apparent resistivities have been observed. Up to periods of 50–100 s the Travale graben is the dominating 2-D structure, but for longer periods of investigation the three-dimensionality of electrical conductivity structures has to be considered. The apparent resistivities inside the geothermal anomaly are extremely low, reaching not more than 50 ohm · m, even in the lower crust, but they increase to 100–300 ohm · m north of the geothermal field. Total conductance also indicates the geothermal field as a local conductivity anomaly, whereas further to the north the poorly conducting “barrier” has been confirmed. The cause of the high conductivity structures inside the geothermal area is to be seen in a highly fractured basement within this zone, allowing upward movement of hydrothermal fluids.  相似文献   

2.
3.
G. Geri  I. Marson  A. Rossi  B. Toro 《Geothermics》1982,11(3):153-161
The results of precise levelling measurements on a specially constructed network of benchmarks in the Travale geothermal area (Tuscany, Italy) revealed the subsidence of the central part of this area, at an average rate of 20 mm/year in the period 1978 – 1980. Two sets of gravity measurements over the same time-interval, using two Lacoste — Romberg gravimeters, have an average standard error of 2–4 μGal for the main network, and 4–8 μGal for the auxiliary network. The observed g variations fall within the error range in most of the stations. The variations noted in the stations in the south-western area of the field clearly fall outside the confidence interval, and cannot entirely be attributed to changes in elevation.An absolute gravity station was set up at Palazzo at Piano (Siena), where measurements were made by the IMGC absolute gravimeter, to detect any long-term gravity variations induced by geodynamic events.  相似文献   

4.
In October 1981 the AAMT method was tested in the geothermal field of Travale. This method is based on the MT method, but uses artificial EM fields excited by a transmitter some kilometres from the receiving station. The transmitter consists of a switch mode amplifier for the lower frequency band (< 300 Hz) and six stacked linear amplifiers for the high frequency band. Maximum output is about 5 kW. For measurement of the very small EM field at the receiver the correlation technique is used to obtain best noise rejection. Interpretation of measured data is done by model calculations with the help of a near field theory. Cagniard's theory is found to be applicable only for high frequencies (i.e. short periods). The final result is a three-layer model in good agreement with known geology and resistivity models from other authors.  相似文献   

5.
As part of the European Community research programme telluric, magnetotelluric and geomagnetic deep sounding measurements were undertaken at 40 sites within the geothermal area of Travale. In the period range of 6–10,000 s the telluric field inside the Travale graben is strongly polarized and directed, independent of the period, about parallel to the graben strike. The lateral variation of the telluric field amplitude is determined mainly by the distribution of the rocks (e.g. the central part of the geothermal anomaly inside the graben is correlated with a horst structure of resistive rocks) and an influence of the geothermal anomaly on the telluric field distribution cannot be observed. The apparent resistivity, as well as the phase curves, are rather similar at all sites within the graben, exhibiting 4–40 ohm · m for periods of 10 s and 50–500 ohm · m for periods of 10,000 s in E-polarization. In the period range of 10–100 s the E- and B-polarization of magnetotelluric measurements can be interpreted by the 2-D effect of the Travale graben, while with increasing period the induced current system becomes more and more 3-D below all sites. This limits the determination of the sedimentary cover thickness (max. 2500 m) by 1-D and 2-D model calculations to periods of less than 100 s.  相似文献   

6.
7.
Larderello–Travale is one of the few geothermal systems in the world that is characterized by a reservoir pressure much lower than hydrostatic. This is a consequence of its natural evolution from an initial liquid-dominated to the current steam-dominated system. Beneath a nearly impermeable cover, the geothermal reservoir consists of carbonate-anhydrite formations and, at greater depth, by metamorphic rocks. The shallow reservoir has temperatures in the range of 220–250 °C, and pressures of about 20 bar at a depth of 1000 m, while the deep metamorphic reservoir has temperatures of 300–350 °C, and pressures of about 70 bar at a depth of 3000 m. The 3D numerical code “TOUGH2” has been used to conduct a regional modeling study to investigate the production mechanism of superheated steam, the interactions between the geothermal field and the surrounding deep aquifers, and the field sustainability. All the available geoscientific data collected in about one century of exploration and exploitation have been used to provide the necessary input parameters for the model, which covers an area (4900 km2) about 10 times wider than the Larderello–Travale geothermal field (400 km2). The numerical model explains the origin of the steam extracted in about one century of exploitation and shows that, at the current level, the production is sustainable at least for the next 100 years.  相似文献   

8.
Isotope geothermometry in the larderello geothermal field   总被引:1,自引:0,他引:1  
The isotope geothermometers based on the 13C/12C fractionation between carbon dioxide and methane and on the 18O/16O fractionation between carbon dioxide and water vapour have been applied in Larderello geothermal field. The CO2 - CH4 thermometer gives temperatures which are 50–200°C higher than those measured at the well head. The distribution of the isotopic temperatures within the field follows more or less similar patterns to those given by the well-head temperatures. They are believed to reflect the temperatures of formation of CO2 and CH4.The CO2 - H2O thermometer gives the temperature of the geothermal reservoirs tapped, and the difference between the isotopic temperature and the temperature measured at the well head is a measure of the cooling undergone by geothermal fluid on its way up to the surface.  相似文献   

9.
The various tectonic units underlying the Larderello — Travale geothermal region have undergone hydrothermal metamorphism. The hydrothermal mineral assemblages are generally consistent with the temperatures now measured in the wells, leading to the hypothesis that solid phases deposited from a liquid medium during a hot-water stage that preceded the vapour-dominated one.  相似文献   

10.
Stable-isotope analyses were carried out on hydrothermal minerals sampled from the deep metamorphic units at Larderello, Italy. The 18O values obtained for the most retentive minerals, quartz and tourmaline, are from + 12.0‰ to + 14.7‰ and 9.9‰, respectively, and indicate deposition from an 18O-rich fluid. Calculated 18O values for these fluids range from + 5.3‰ to + 13.4‰. These values, combined with available fluid inclusion and petrographic data, are consistent with the proposed existence of an early thermal fluid of probable magmatic origin and a late meteoric water. Mixing between these two fluids occurred locally.  相似文献   

11.
Up to now development of the resource in Olkaria geothermal field, Kenya, has been based on fragmental information that is inconclusive in most respects. Development has been concentrated in an area of 4 km2 at most, with well to well spacing of less than 300 m. The move now is to understand the greater Olkaria field by siting exploratory wells in different parts of the area considered of reasonable potential. To correlate the data available from the different parts of the field, the geology of the area, as a base for the composite field model, is discussed and shown to have major controls over fluid movements in the area and other features.  相似文献   

12.
A model to explain the behaviour of the Sulphur Springs geothermal field has been derived from downhole temperature records in the exploration boreholes. The model incorporates a main reservoir at 1 – 1.5 km depth, intersected by steeply inclined fissures which carry steam and gas to the well bores, and to the natural fumaroles. A substantial decline in the gas content of the steam could have serious consequences where the fissures are utilised as conduits between the boreholes and the deep reservoir. Further development of the field should concentrate on the fissures around 300 m or on the reservoir itself around 1000 – 1500 m.  相似文献   

13.
A history of numerical modelling of the Wairakei geothermal field   总被引:1,自引:0,他引:1  
The history of computer modelling of the Wairakei geothermal field is reviewed. It covers the development of lumped-parameter models during the 1970s and then discusses the evolution and first applications of geothermal reservoir simulation techniques. The development of reservoir models of Wairakei at the University of Auckland began in the early 1980s; current models produces good matches against field data. Many future scenarios have been run using the University's models and have been presented at various regulatory hearings. The general conclusion from these scenarios is that Wairakei can continue producing electricity at the current level for at least another 50 years, and if Wairakei is shut down after 100 years of operation it will recover to its pre-exploitation state after a further 300 years.  相似文献   

14.
The purpose of the research activities at the Skierniewice geothermal test site is to develop and apply an exploration methodology for low-enthalpy systems in sedimentary formations. Work included seismic and magnetotelluric surveys carried out close to well Kompina-2 to create a detailed structural–geologic model and characterize the anisotropic fracture system around the borehole. The study included the reprocessing of archival data from selected boreholes and 2D seismic lines. The collected data were used to identify formations with high fracture permeability and the presumed flow path of geothermal (∼110 °C) brine in high productivity zones, and determining rock porosities and salinity distribution in the subsurface. The next stage of the investigations will focus on siting a second borehole and studying the possibility of installing a plant for electrical generation or direct geothermal heat applications.  相似文献   

15.
An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest.  相似文献   

16.
The initial problems associated with the fieldwork and integration of the results of four independent European university research groups involved in magnetotelluric studies in the Travale Test Site are discussed. This is followed by an account of the development of collaborative field studies, rewarding data and computer programme interchange and finally compatibility in the resulting electrical conductivity models and their interpretation. A suggested strategy for future EEC collaborative geothermal studies concludes this overview.  相似文献   

17.
In 1959 production began from the Bagnore reservoir near the Mt. Amiata Volcano. The reservoir gas was initially at a pressure of approximately 23 ata. Its noncondensable gas content was more than 80% by weight, most of which was CO2. During the first few years of production the noncondensable gas content and the reservoir pressure dropped simultaneously to about 10% by weight and 7 ata respectively. They have been changing very slowly since that time.Detailed studies of hydrogeological data from the Bagnore field were made as a part of this work. The initial reservoir temperature was estimated to be between 170 and 180°C. The history of watering-out of individual wells on the periphery of the field was examined. The depth of fractures in these wells can be correlated with the gas-water interface in the reservoir which is assumed to rise in direct proportion to the drop in reservoir pressure.A mathematical model which accounts for thermodynamic and chemical equilibria between the vapor, liquid and solid carbonate phases in the reservoir was developed and applied to a study of the initial conditions in the reservoir. A lumped-parameter model of a 2-phase, 2-component system was then developed. This CO2-H2O, liquid-vapor model was used to calculate history of pressure and composition for the reservoir. These calculated histories compared favourably with those observed in the field.This research confirms the hypothesis that there was initially a large accumulation of noncondensable gas in the reservoir, and that it was drawn off during the first years of exploitation. Model calculations for the initial state of the reservoir indicate the CO2 initially present could not be derived solely from local carbonate rocks. Calculations with the producing-state lumped-parameter model, furthermore, indicate that the long-term producing concentration of CO2 cannot be accounted for by assuming reasonable amounts of CO2-saturated liquid-water influx into the reservoir. These results point out that further investigation into the nature of CO2 and water influx into the reservoir are required.  相似文献   

18.
Geothermal electricity production in Indonesia began with the operation of a 0.25 MWe pilot project in Kamojang geothermal field, in 1978. Commercial operation started in 1983, with the commissioning of the 30 MWe Unit-1 power plant. In 1987, an additional capacity of 110 MWe was provided by the Unit-2 and Unit-3 power plants. The addition of the 60 MWe Unit-4 power plant in 2008 increased the total generating capacity to 200 MWe. The 27 years of commercial operation have led to a slight decline in reservoir pressure and temperature within the active production sector. The most recent significant change in the field conditions and performance occurred following the 2008 increase in generating capacity from 140 to 200 MWe. The production decline of individual wells has been relatively low, at an average of 3%/yr. However, the increased rate of steam withdrawal might negatively affect long-term sustainability of energy production at Kamojang unless suitable field management strategies are implemented. In order to stabilize the steam flow, it has been necessary to drill about three make-up wells every 2–3 years. The unbalanced mass extraction, where less than 30% of the produced steam mass can be injected, is a serious concern for long-term reservoir management in Kamojang. The field operator (Pertamina) plans to increase the Kamojang generating capacity from 200 to 230 MWe (Unit 5) and optimize the long-term performance of the Kamojang geothermal resource. The response of the reservoir during the previous three decades is being used to guide reservoir development for the planned increase in production capacity.  相似文献   

19.
The Cerro Prieto geothermal field is located in the Mexicali Valley which is characterized morphologically by the presence of the elongated Cucapah range striking predominantly NW-SE. This range consists of Upper Cretaceous granite which has intruded and metamorphized the Cretaceous and/or Paleozoic sediments. Near the field is the rhyodacitic Cerro Prieto volcano which pierces through the Cenozoic deltaic sediments.We divided the deltaic sediments into two lithostratigraphic units: Unit A: Unconsolidated Quaternary deltaic sediments composed of clays, sands and gravels. Unit B: Consolidated Tertiary deltaic sediments composed of siltstone, shales and sandstones.Since the geothermal aquifer is intimately related to the structural behavior of the geological formations which are overlaid by unconsolidated deltaic sediments, it was necessary to apply different geophysical methods to understand the behavior of the consolidated sediments and the basement.Based upon geophysical surveys and the wells completed to date, a regional geologic model and several cross-sections of the Cerro Prieto field have been developed.Two fault systems have been defined. The principal one, which we called the Cerro Prieto system, has a predominantly NW-SE strike, parallel to important faults such as the San Andreas, San Jacinto, Cucapah, Imperial etc.Normal to the NW-SE system are faults with predominantly SW-NE strikes, which we designated the Volcano system. At depth, these two systems have apparently created a step-faulted horst and graben structure striking NW-SE with its eastern and western sides out.A number of cross-sections were made based on petrographic analyses of cuttings and core samples. These sections confirm the existence of two fault systems passing through the geothermal field, which complicates the structural interpretation of the field.The geologic sections based on the petrographic analysis of rock samples obtained from the drillings render very complicated a structural interpretation of the two fault systems which affect the geothermal field and which occur locally in great frequency.  相似文献   

20.
Hydrothermal alteration in the Aluto-Langano geothermal field, Ethiopia   总被引:1,自引:0,他引:1  
The hydrothermal mineral assemblages found in eight wells (with a depth range of 1320–2500 m) of the active geothermal field of Aluto-Langano (Ethiopia) indicate a complex evolution of water-rock interaction processes. The zone of upflow is characterized by high temperatures (up to 335°C) and the presence of a propylitic alteration (epidote, calcite, quartz and chlorite, as major phases) coexisting with calcite and clay minerals. The zone of lateral outflow is characterized by mixing of deep and shallow waters and the occurrence of a calcite-clay alteration that overprints a previous propylitic assemblage. Clay minerals have a mushroom-shaped zonal distribution consistent with the present thermal structure of the field. Microprobe analyses have been carried out on chlorite and illite in order to apply several geothermometers. Most of the chlorite is iron-rich chlorite. It is found that the temperatures calculated from the chlorite geothermometer (159–292°C) after Cathelineau and Nieva [Contrib. Mineral. Petrol. 91, 235–244 (1985)] are in good agreement with in-hole measured temperatures (155–300°C). In the upflow zone, temperatures calculated from this geothermometer (217–292°C), together with fluid inclusion data of Valori et al. [Eur. J. Mineral. 4, 907–919 (1992)], and computed saturation indices of alteration minerals, indicate thermal stability or slight heating. On the other hand, evidence of a significant cooling process (up to 171°C) in the outflow zone is provided by the comparison between fluid inclusion homogenization temperature (240–326°C) and in-hole temperature (155–250°C). The apparent salinities (0.8–2.3 wt% NaCl eq.) of the fluid inclusions are generally higher than the salinity of the present reservoir fluid (0.29–0.36 wt% NaCl eq.). Clay minerals (illite, smectite, Ill/S mixed layers, vermiculite and chloritic intergrades) generally occur at temperatures consistent with their stability fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号