首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of novel zinc oxide (ZnO) nanostructure consisting of ZnO nanoparticles formed into the network of fibers was investigated. This structure was fabricated from the solvothermal reaction of the poly(vinyl alcohol) (PVA)/zinc acetate composite fibers, which were firstly prepared by electrospinning technique. It was found that zinc acetate within the PVA matrix was converted into ZnO nanoparticles in hexagonal wurtzite structure, while PVA was still retained within the structure. Therefore, the product was no longer easy to crumble into powder, easy to handle, yet it still possessed nanostructure feature. The growth mechanism of ZnO nanoclusters within the structure was also proposed by investigating the effects of various parameters, i.e. content of zinc acetate within the fibers, reaction temperature and reaction time.  相似文献   

2.
Supported photocatalytic poly(tetrafluoroethylene) (PTFE)/ZnO porous membranes were prepared by sintering electrospun PTFE/poly(vinylalcohol)/zinc acetate dehydrate composite membranes. Electrospun PTFE membranes were utilized as supports with excellent chemical stability and high specific surface area, while the photocatalyst‐ZnO particles derived from the thermal decomposition of zinc acetate dehydrate were homogeneously immobilized on the surface of ultrafine PTFE fibers. The PTFE/ZnO membranes could be easily recovered and reused after water treatment. PTFE/ZnO membranes are expected to have a wide range of potential applications in photocatalysis and photocatalysis‐membrane reactors, playing the role of a catalyst as well as a selective barrier against contaminants of interest.  相似文献   

3.
In this investigation, in situ synthesis of zinc oxide nanoparticles in the presence of multiwalled carbon nanotubes (CNTs) have been carried out using a sonochemical technique. Zinc(II)acetate was used as a source of ZnO in the presence of ethylene glycol (EG) to obtain zinc oxide (ZnO) nanoparticles. The synthesized hybrid ZnO/CNTs nanoparticles were used as reinforcements to enhance the mechanical, thermal and UV absorbing properties of Nylon‐6 composite fibers. The polymer nanocomposites (PNC) were fabricated by dry mixing Nylon‐6 polymer powder with the ZnO/CNTs hybrid nanoparticles as the first step, then followed by the drying and melt extrusion process of fiber materials in a single‐screw extruder. The extruded fibers were stretched and stabilized using a godet set‐up and wound on a Wayne filament winder machine. The hybrid ZnO/CNTs infused Nylon‐6 composite fibers were compared with commercial ZnO, CNTs infused Nylon‐6 composite fibers and neat Nylon‐6 fibers for their structural and thermal properties. The morphological characteristics of ZnO/CNTs nanoparticles were carried out using X‐ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon‐6 PNC fibers which were of ~80 μ size were tested mechanically. The tensile tests revealed that failure stress of the 1% infused ZnO/CNTs Nylon‐6 PNC fibers is about 73% higher than the neat extruded Nylon‐6 fiber and the improvement in the tensile modulus is 377.4%. The DSC results show an increase in the glass transition temperature and crystallization for ZnO/CNTs infused Nylon‐6 PNC fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Solvothermal reaction of zinc acetate in various alcohols resulted in the formation of zinc oxide (ZnO) nanorods. The effects of reaction conditions on the product morphology as well as crystallization mechanism were investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) techniques. It was found that average diameter and length of the nanorods increased with an increase in reaction temperature or the initial concentration of zinc acetate. On the contrary, the aspect ratio of the product depended upon type of alcohol used as the reaction medium. The aspect ratio of ZnO nanorods increased from 1.7 to 5.6 when the alcohol was changed from 1-butanol to 1-decanol. An investigation of the reaction mechanism suggested that the formation of ZnO nanorods was initiated from the esterification reaction between zinc acetate precursor and alcohol to form ZnO seeds.  相似文献   

5.
We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration.  相似文献   

6.
ZnO nanocrystallites have been in situ embedded in cellulose nanofibers by a novel method that combines electrospinning and solvothermal techniques. Zn(OAc)2/cellulose acetate (CA) precursor hybrid nanofibers with diameter in the range of 160–330 nm were first fabricated via the electrospinning technique using zinc acetate as precursor, CA as the carrier, and dimethylformamide (DMF)/acetone(2 : 1) mixture as cosolvent. The precursor nanofibers were transformed into ZnO/cellulose hybrid fibers by hydrolysis in 0.1 mol/L NaOH aqueous solution. Subsequently, these hybrid fibers were further solvothermally treated in 180°C glycerol oil bath to improve the crystallite structure of the ZnO nanoparticles containing in the nanofibers. The structure and morphology of nanofibers were characterized by scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. It was found that hexagonal structured ZnO nanocrystallites with the size of ~ 30 nm were dispersed on the nanofiber surfaces and within the nanofibers with diameter of about 80 nm. The photocatalytic property of the ZnO/cellulose hybrid nanofibers toward Rhodamine (RhB) was tested under the irradiation of visible light. As a catalyst, it inherits not only the photocatalytic ability of nano‐ZnO, but also the thermal stability, good mechanical property, and solvent‐resistibility of cellulose nanofibers. The key advantages of this hybrid nanofiber over neat ZnO nanoparticles are its elasticity, dimensional stability, durability, and easy recyclability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
利用溶胶-凝胶浸渍提拉法在导电玻璃(ITO)基板上制备了氧化锌(ZnO)薄膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电化学阻抗谱(EIS)等对ZnO薄膜的结构、形貌、以及光电性能进行了分析。结果表明,随着醋酸锌浓度的增加,薄膜由短柱状最终转化为无规则定位生长的聚集球形颗粒结构。随着醋酸锌浓度的升高,薄膜的结晶强度不断增加,薄膜的光电转化效率进一步增加。当醋酸锌浓度为0.9mol/L时,薄膜的光电转化效率为4.5%。  相似文献   

8.
纳米氧化锌的制备及其与MEH-PPV共混光电池器件性能研究   总被引:2,自引:0,他引:2  
利用溶胶-凝胶法,以醋酸锌为前驱体,制备了纳米ZnO颗粒及纳米棒,用TEM和XRD分别研究了ZnO纳米的形貌和结构特征;用旋涂及热蒸镀的方法将纳米ZnO和聚苯乙烯撑(MEH-PPV)的混合体制成有机-无机复合光电池薄膜器件。结果表明,MEH-PPV的荧光随着ZnO含量的增加出现明显的淬灭现象,器件在标准模拟太阳光照射下,获得了1.0%的能量转化效率,和国际报道的ZnO-聚合物共混太阳能电池1.6%的能量转化效率接近。  相似文献   

9.
C/ZnO composites with increased electromagnetic (EM) wave absorbing features have been synthesized through a simple one-pot hydrothermal process and subsequent high temperature carbonization under the protection of argon. The results depict that the maximum absorption of C/ZnO composites synthesized with the optimal molar ratio of zinc acetate to glucose is ?50.43?dB at 15.77?GHz. The 1.16-mm-thick coating shows a wide effective absorption bandwidth (3.52?GHz) of EM wave (RL≤?10?dB). The thin coating thickness of the C/ZnO composites is desirable for decreasing the absorber weight in EM wave absorption. And there are no other reagents used throughout the synthesis process except for the green glucose and zinc acetate. Thus, C/ZnO composites would be highly promising lightweight EM wave absorbing materials.  相似文献   

10.
To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells.  相似文献   

11.
Wen Yu  Chin-Hung Lan  Peng-Fei Fang 《Polymer》2010,51(11):2403-1368
Pure poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and zinc oxide (ZnO)/PHBV composite nanofibers were fabricated by an electrospinning method. ZnO nanoparticles (NPs) with a diameter of about 10-20 nm were doped in the PHBV fibers and no dispersion agent was utilized. Both pure PHBV and composite electrospun fibers were smooth and uniform. ZnO NPs did not affect the basic crystalline structure of electrospun PHBV fibers. The well dispersion of NPs was attributed to the interaction of hydrogen bonds between -OH groups on the surface of ZnO and CO groups in the PHBV. ZnO NPs were not nucleating or modifying agents but retarding agents for crystallization in the polymer matrix. The crystallinity and crystallization rate was lowered by adding ZnO NPs. The well dispersion of ZnO NPs in the electrospun nanofibers was confirmed by TEM characterization. A hypothesis was developed to interpret the influence of ZnO NPs on the crystalline behavior of electrospun PHBV fibers.  相似文献   

12.
Porous nickel oxide (NiO) and zinc oxide (ZnO) submicro- and nanofibers were synthesized by impregnating electrospun polyacrylonitrile (PAN) fiber templates with corresponding metal nitrate aqueous solutions and subsequent calcination. The diameter of the NiO and ZnO fibers was closely related to that of the template fibers and larger diameters were obtained when using the template fibers with larger diameter. SEM results showed that the NiO and ZnO fibers have a large amount of pores with diameters ranging from 5 nm to 20 nm and 50 nm to 100 nm, respectively. Energy dispersive X-ray (EDX) spectra and X-ray diffraction (XRD) patterns testified that the obtained materials were NiO and ZnO with high purity.  相似文献   

13.
采用液相直接沉淀法,以醋酸锌和氢氧化钠为原料,在醇溶剂体系中成功制备出不同形貌的ZnO纳米晶,使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-vis)等检测方法对样品进行表征.结果表明,制备的ZnO均为六方纤锌矿结构,形貌受到溶剂种类、反应温度和反应时间等因素影响;在乙醇溶剂中,通过反应温度和反应时间控制可得到分散均匀、形貌均一纳米颗粒或纳米棒,并对不同形貌ZnO的生长机理进行了初步讨论.  相似文献   

14.
Electrospinning is a versatile technique, which can be used to generate nanofibers from a rich variety of materials. We investigate the variation of a zinc oxide (ZnO)-polyvinylpyrrolidone (PVP) composite structure in morphology by electrospinning from a series of mixture solutions of ZnO sol–gel and PVP. Calcination conditions for the crystallization of ZnO nanofibers and removal of the PVP component from the ZnO-PVP composite nanofibers were also studied. The progression of the ZnO-PVP composite structure from grains to nanofibers was observed, and ZnO-PVP nanofibers as thin as 29.9 ± 0.8 nm on average were successfully fabricated. The size of the resultant ZnO-PVP composite nanofibers was considerably affected by two parameters: the concentrations of zinc acetate and PVP in the precursor solution. The concentration of zinc acetate particularly influenced the diameter distribution of the ZnO-PVP nanofibers. The ZnO-PVP nanofibers could be subsequently converted into ZnO nanofibers of a pure wurtzite phase via calcination in air at 500°C for 2 h.  相似文献   

15.
Recently, interest in nonwoven mats composed of fibers manufactured by drawing polymer solutions or melts with suspended nanoparticles has been growing due to exciting opportunities for use in biomedical applications. Poly(vinyl alcohol) (PVA), due to its biocompatibility, and zinc oxide (ZnO), due its antibacterial activity, present one interesting combination for the manufacture of nonwoven fiber mats for potential use as wound dressings. Therefore, we have investigated the electrospinning of aqueous PVA solutions with suspended ZnO nanoparticles. ZnO nanoparticles of three different diameters (20, 70, and 100 nm) were used in the study. Interestingly, we found that increasing the diameter of suspended ZnO nanoparticles was accompanied by a decrease in the diameter of the electrospun fibers. Fourier transform infrared spectroscopy indicated that the ZnO nanoparticles were merely suspended in the aqueous PVA solution without any chemical bonding between the ZnO nanoparticles and the PVA chains. Shear rheometry of the suspensions indicated that, over the relevant range of shear rates, all of the samples exhibited essentially Newtonian behavior. However, the viscosity increased with a decrease in the diameter of the ZnO nanoparticles. We suggest that the effect of the nanoparticles on the diameter of the electrospun fibers is through their effect on the viscosity of the suspension from which the fibers are drawn. Finally, as was expected, increasing the electric field strength led to a gradual decrease in the diameter of the electrospun fibers. POLYM. ENG. SCI., 54:1969–1975, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
We were successful in synthesizing periodic layered zinc acetate nanobelts through a hydrothermal solution process. One-dimensional structured ZnO nanoparticle aggregate was obtained by simple thermal annealing of the above-mentioned layered ZnO acetate nanobelts at 300 °C. The morphology, microstructure, and composition of the synthesized ZnO and its precursors were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and infrared spectroscopy, respectively. Low angle X-ray diffraction spectra reveal that as-synthesized zinc acetate has a layered structure with two interlayer d-spacings (one is 1.32 nm and the other is 1.91 nm). SEM and TEM indicate that nanobelt precursors were 100–200 nm in width and possesses length up to 30 μm. Calcination of precursor in air results in the formation of one-dimensional structured ZnO nanoparticle aggregates. In addition, the as-prepared ZnO nanoparticle aggregates exhibit high photocatalytic activity for the photocatalytic degradation of methyl orange (MO).  相似文献   

17.
以二水醋酸锌和六次甲基四胺为原料,采用温和水热法制备了六方柱状ZnO。采用X射线衍射(XRD)、扫描电镜(SEM)和紫外可见光谱对其物相、形貌和光催化性能进行了分析,着重研究了不同的反应条件对ZnO形貌的影响,探讨了六方柱状ZnO的形成机理。结果表明:溶液浓度、pH值、反应温度和反应时间对生成晶体的形貌和晶体质量都会产生影响。制备结晶良好的ZnO的最佳反应条件为:反应液浓度为0.57mol/L,pH值为6.0,反应温度为97℃,反应时间为16h。六方柱状ZnO晶体的形成机理是在一定的水热条件下,醋酸锌与六次甲基四胺水解后形成晶核,由于(0001)晶面的生长速率大于其它晶面,以及(0001)晶面易俘获原子,使得成核后的ZnO沿(0001)面定向生长,最终形成六方柱状结构。  相似文献   

18.
Biodegradable cellulose acetate (CA) membranes were prepared via phase inversion induced by immersion precipitation method. Acetic acid and deionized water were used as solvent and non-solvent, respectively. The modifying effect of gelatin and zinc oxide (ZnO) nanoparticles additives was investigated on the membranes in terms of water flux, protein rejection percentage, and fouling ability during two hours of bovine serum albumin separation from aqueous solution. Specimens were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), tensile test, contact angle technique, and porosity measurement. The incorporation of gelatin and ZnO nanoparticles into the CA matrix increased the porosity coefficient and hydrophilicity. Moreover, gelatin improved the tensile properties of the membrane.  相似文献   

19.
采用醋酸锌和氨水为原料、水作为溶剂,以水热法在80℃条件下反应20 h制备出了簇状氧化锌纳米棒,用XRD、SEM分别分析了制备产物的物相和形貌。以ZnO纳米棒为光催化剂对有机染料甲基橙进行了光催化降解实验,研究了甲基橙溶液初始浓度和催化剂添加量对光催化的影响。结果表明,合成的氧化锌纳米棒均为六方晶系铅锌矿结构;产物为从中心发散的簇状纳米棒结构,纳米棒直径分布均匀且分散性好,每个簇由几十个纳米棒组成,每个纳米棒平均直径约为150 nm,长度约为5μm。制备的ZnO有良好的光催化性能。  相似文献   

20.
以对苯二甲酸和生物基乙二醇为原料,聚乙二醇(PEG)为第三单体,纳米氧化锌(Zn O)为抗静电添加剂,制备抗静电生物基共聚酯,并纺制抗静电生物基共聚酯纤维。通过特性黏度、热学性能、表面接触角和体积比电阻值分析PEG和纳米Zn O的添加量对生物基共聚酯切片与纤维热学性能、亲水性能及抗静电性能的影响。试验结果发现:当PEG及纳米Zn O添加量分别为摩尔分数0.2%及1.6%时,改性生物基共聚酯纤维的热学性能最稳定,抗静电性能在所研究范围内最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号