首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
为了探索超声波和微波技术在芝麻饼粕ACE抑制肽制备中的应用,分别以超声波和微波对芝麻饼粕预处理,超声波辅助酶解,研究了超声波功率、超声波时间、微波功率、微波时间和加酶量对ACE抑制率的影响。结果表明:超声波预处理功率为4 W/m L、预处理10 min、添加1 300 U/g碱性蛋白酶时得到的芝麻饼粕ACE抑制肽的IC50值为2.81 mg/m L。超声波辅助酶解过程中超声功率选择0.5 W/m L、添加1 700 U/g碱性蛋白酶、酶解15 min时得到的芝麻饼粕ACE抑制肽的IC50值为2.96 mg/m L。微波预处理功率为1.33W/m L、微波预处理5 min时得到的芝麻饼粕ACE抑制肽的IC50值为2.81 mg/m L。  相似文献   

2.
利用超声辅助酶法制备燕麦ACE 抑制肽,研究超声波处理时间、超声波频率、超声波功率、超声波水浴温度、酶解时间及加酶量对ACE 抑制率和水解度的影响。通过单因素试验得到最佳条件,即超声波处理时间30min、超声频率50kHz、超声功率176W、超声温度55℃、酶解时间2h、加酶量5%(Alcalase 酶);随后选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过优化得到最优条件为超声波处理时间28.40min、超声波功率190.08W、超声波水浴温度55.05℃、酶解时间2.25h,在此条件下燕麦ACE 抑制肽的抑制率87.50%,多肽质量浓度8mg/ml。  相似文献   

3.
为进一步提高辣木籽蛋白资源的开发利用,采用盐提法提取辣木籽蛋白,再采用超声波辅助酶法制备辣木籽ACE抑制肽。以水解度和ACE抑制率为评价指标,通过单因素实验探究超声波功率、超声酶解时间、超声酶解温度及料液比对制备ACE抑制肽的影响,采用响应面法对制备工艺条件进行优化。结果表明:超声波辅助酶法制备辣木籽ACE抑制肽的最佳酶解工艺条件为碱性蛋白酶添加量5.5 mg/mL、pH 9、超声波功率500 W、超声酶解时间1.7 h、超声酶解温度55℃、料液比1∶45,在此条件下制备的酶解物ACE抑制率达到78.32%,水解度为7.78%。以辣木籽为原料制备ACE抑制肽作为功能性蛋白肽产品,可有效提高辣木籽蛋白资源的开发利用。  相似文献   

4.
该研究利用超声波技术(0~500 W,0~35 min)辅助中性蛋白酶(0.5%~5%,1 h~6 h,1 500 U/g~7 500 U/g)水解海参性腺制备血管紧张素转化酶(angiotensin convert enzyme,ACE)抑制肽,再经过模拟体内消化试验分析海参性腺ACE抑制肽的消化稳定性。试验结果表明:随着超声功率、超声时间、底物浓度、酶解时间和酶添加量的增加,ACE抑制率先增加后降低。随超声功率、超声时间和底物浓度的增加,水解度具有相同的变化趋势;随着酶解时间和加酶量的增加,水解度逐渐上升后趋于平稳。根据水解度和ACE抑制率得出可以高效制备海参性腺ACE抑制肽的超声预处理和酶解反应条件:超声预处理功率200 W,时间15 min,底物浓度2%,酶添加量4 500 U/g,酶解时间2 h,海参性腺酶解液的水解度和ACE抑制率均较高,分别为7.81%和73.81%。此条件下制备的海参性腺ACE抑制肽经超滤后进行胃肠模拟消化试验,消化前后海参性腺ACE抑制肽的活性无显著性差异(P>0.05),表明其在体内能够表现出良好的稳定性,具有稳定的降血压功效。  相似文献   

5.
为了考察大米四种蛋白经模拟体外消化后能否产生ACE抑制活性肽及其活性状况,本研究以大米为原料,Osborne法提取大米四种蛋白。体外模拟胃肠道消化过程,研究消化酶解ACE抑制活性肽产生情况及其活性大小,同时检测酶解产物的水解度和分子量分布。实验结果表明,大米四种蛋白经胃蛋白酶消化30min,酶解产物的ACE抑制活性均达到较高水平,随后经过胰蛋白酶作用,酶解产物的ACE抑制活性下降。大米清蛋白、球蛋白、醇溶蛋白和谷蛋白的4h消化产物半抑制浓度IC50值分别为1.45mg/mL、0.91mg/mL、1.19mg/mL和0.75mg/mL,分子量集中在1000u以下,是易于被人体吸收的ACE抑制活性肽。同时,未经酶解的蛋白几乎没有ACE抑制活性。结果说明大米四种蛋白的体外消化酶解物具有不同大小的ACE抑制活性,其中大米谷蛋白消化产物的ACE抑制活性最高,人体正常食用大米蛋白,经胃肠消化可以产生被人体吸收的ACE抑制活性肽。  相似文献   

6.
以泥鳅为原料,采用超声波辅助菠萝蛋白酶水解泥鳅蛋白制备降血压肽。在单因素试验的基础上,通过正交试验优化超声及酶解处理工艺,得到最佳的试验条件:超声功率300 W,超声波酶解处理时间2 h,处理温度50℃,p H=6.5、底物质量分数30%,此时泥鳅蛋白酶解液的ACE抑制率为90.8%。同未经超声波处理的泥鳅蛋白酶解液相比,酶解时间降低了2 h,处理温度降低5℃,加酶量降低18%,而且酶解液的ACE抑制活性得到提高。试验结果表明,超声波辅助酶解泥鳅蛋白可显著提高酶解效率,增强活性肽的ACE抑制活性。  相似文献   

7.
研究逆流超声预处理大米蛋白对其碱性蛋白酶酶解制备血管紧张素转换酶(Angiotensin-I Converting Enzyme,ACE)抑制肽的影响。首先从米渣中提取大米蛋白,以ACE抑制率为主要指标,水解度为辅助指标,运用单因素逐级优化法对酶解反应的底物浓度、时间、温度、加酶量和pH进行参数优化,在此基础上筛选逆流超声模式的最佳超声参数。结果表明最佳酶解参数为底物浓度30 g/L、加酶量(E/S)7.5%、温度50 ℃、pH8.5和酶解时间60 min,此时酶解产物ACE抑制率为45.59%,水解度为21.49%。最佳超声参数为超声频率20 kHz、功率密度170 W/L、时间12.5 min。此时酶解液ACE抑制率达72.24%,水解度为21.64%,相较于未超声组ACE抑制率提高了57.42%,相较于传统超声组,ACE抑制率提高了11.36%。结果表明逆流超声波辅助酶解法能有效提高酶解效率、减少能耗、促进ACE抑制肽制备。  相似文献   

8.
扫频超声波预处理对麦胚蛋白制备ACE抑制肽的影响   总被引:1,自引:0,他引:1  
研究了扫频式超声波预处理对小麦胚芽蛋白制备ACE抑制肽的影响。以ACE抑制活性和水解度为指标,为了提高蛋白质酶解制备ACE抑制肽的反应效率,改善酶解物的ACE抑制活性,考察了超声频率、扫频周期、上、下振板间距、超声时间和料液浓度对小麦胚芽蛋白预处理效果的影响。试验结果表明,在超声波总功率600 W/30 L、料液初始温度35℃和超声波每工作250 s间歇5 s的前提下,扫频式超声波预处理麦胚蛋白的最佳条件是:上、下振板的超声波频率分别为(24±2)k Hz和(68±2)k Hz、扫频周期170 ms、振板间距5 cm、超声波时间140 min、料液质量浓度1.0 g/100 m L。在此条件下,酶解产物的ACE抑制率可达到36.50%,半数抑制剂浓度IC50为0.53 mg/m L,产物转化率77.5%±2.8%。超声波预处理对麦胚蛋白的水解度和酶解产物的转化率没有明显影响,而使其水解产物的ACE抑制活性显著提高。扫频式超声波的预处理效果优于定频式超声波。  相似文献   

9.
运用超声波协同双酶复合酶法水解米渣蛋白制备ACE抑制肽。超声波预处理后米渣蛋白水解物ACE抑制活性显著上升,碱性蛋白酶水解产物ACE抑制活性最强。通过单因素分析和响应面优化,得出最优水解条件为:超声功率1 000W,超声时间25min,酶解时间2.5h,料液比1∶8,加酶量3 000U/g。在此基础上复合中性蛋白酶水解,水解时间缩减至2.0h。水解产物通过超滤以及Sephadex G-25凝胶层析后,得到一分子量为338u,最强ACE抑制活性IC_(50)为116μg/ml组分P2。  相似文献   

10.
血管紧张素转换酶(Angiotensin-I Converting Enzyme,ACE)在血压调节中扮演重要角色,抑制其活性有利于维持血压平衡。食源性ACE抑制肽具有安全、易吸收的特点,受到广泛关注。本研究旨在从茶渣蛋白中获得一种具有高ACE抑制活性的新肽。以ACE抑制率为指标,通过对三种超声方式的比较,确定最佳超声方式;以单因素实验为基础,进行响应面优化确定最佳超声波预处理参数;酶解液分离纯化运用超滤的方法,并对截留分子量小于3 kDa组分进行稳定性分析。结果表明,超声波预处理为最佳处理方式,得最优条件为超声功率300 W、超声温度45 ℃、超声时间25 min。在最佳超声波预处理条件下,ACE抑制率为64.8%,相比于未超声组54.1%提高了10.7%;当截留分子量小于3 kDa时,ACE抑制肽的抑制率为82.3%,相比于原始酶解液提高了17.5%。当温度30 ℃升温至90 ℃,ACE抑制肽的抑制率从82.3%降低至78.3%,减少了4.3%;酸碱度、盐溶液变化其对ACE抑制率表现稳定;模拟消化环境中8 h后,ACE抑制率从82.3%降为62.3%。  相似文献   

11.
为提高蚕蛹蛋白质酶解产物的ACE抑制活性,利用超声波-离子液体耦合法对蚕蛹蛋白质进行预处理。以酶解产物ACE抑制活性为指标,采用单因素结合响应面分析法,研究超声波-离子液体耦合预处理蚕蛹蛋白质的工艺条件,并通过SDS-聚丙烯酰胺凝胶电泳,研究预处理前后蚕蛹蛋白质及其酶解产物相对分子质量的变化。结果表明,各因素对酶解产物ACE抑制活性的影响程度由大到小依次为:液料比、超声波功率、预处理时间。确定最佳预处理工艺条件为:液料比27.2 mL/g,处理时间31.9 min,超声波功率406.8 W。在此优化条件下,蚕蛹蛋白质酶解产物的ACE抑制率为75.7%(IC50=0.071 mg/mL)。与未处理、超声波预处理的相比,超声波-离子液体耦合预处理在制备蚕蛹蛋白质ACE抑制肽上具有明显优势。超声波-离子液体耦合预处理后,蚕蛹蛋白质的分子质量无明显变化,但其酶解产物的分子质量(1.43 ku)变小。  相似文献   

12.
王珂  马海乐  李景  熊建  刘潇 《食品工业科技》2018,39(9):11-15,22
旨在研究不同工作模式的超声预处理对玉米胚芽蛋白酶解制备血管紧张素转换酶(Angiotensin-I Converting Enzyme,ACE)抑制肽的影响。以蛋白转化率和高活性肽占比为指标,利用聚能逆流双频、发散三频和对振双频的超声设备,对玉米胚芽粕进行预处理,得到最优的超声预处理模式;采用单因素逐级优化法来确定最佳超声预处理参数;在最优超声处理条件下,优化酶解反应条件。结果表明分子量在300~1000 Da的多肽ACE抑制活性最高,IC50值为0.78 mg/mL;最优的超声模式为20/40 kHz交替双频,最佳超声预处理参数为功率密度100 W/L、底物浓度为8%、超声时间20 min、超声温度30 ℃,酶解条件为加酶量2000 U/g蛋白、酶解时间2.5 h。在最优条件下,蛋白转化率为85.00%,相比于未超声组的73.01%提高了16.42%;高活性肽占比为29.63%,相比于未超声组的26.00%提高了13.96%。因此,逆流双频超声波辅助酶解法能有效提高蛋白转化率和产物ACE抑制活性,有利于ACE抑制肽的制备。  相似文献   

13.
采用超声波辅助风味蛋白酶酶解制备猪肩胛骨降血压肽并与常规酶解(未经超声处理的酶解)所得酶解液做比较。以酶解液的血管紧张素转化酶(ACE)抑制率为主要指标,考察超声功率、超声时间、超声温度、超声工作间隙、超声后酶解时间对酶解液ACE抑制率的影响,并在此基础上进行响应面优化实验。通过实验,获得的最佳超声条件为:超声时间25min,超声功率717W,超声温度40℃,超声工作间隙比1∶1.5(s/s),酶解时间3h,在该条件下,得到的酶解液ACE抑制率理论值为75.29%。此条件下制备出ACE抑制率为75.58%的猪肩胛骨降血压肽,比常规酶解提高了10.27%。半数抑制浓度(IC50)值下降32.8%,酶解时间缩短1.5h。  相似文献   

14.
采用超声波辅助风味蛋白酶酶解制备猪肩胛骨降血压肽并与常规酶解(未经超声处理的酶解)所得酶解液做比较。以酶解液的血管紧张素转化酶(ACE)抑制率为主要指标,考察超声功率、超声时间、超声温度、超声工作间隙、超声后酶解时间对酶解液ACE抑制率的影响,并在此基础上进行响应面优化实验。通过实验,获得的最佳超声条件为:超声时间25min,超声功率717W,超声温度40℃,超声工作间隙比1∶1.5(s/s),酶解时间3h,在该条件下,得到的酶解液ACE抑制率理论值为75.29%。此条件下制备出ACE抑制率为75.58%的猪肩胛骨降血压肽,比常规酶解提高了10.27%。半数抑制浓度(IC50)值下降32.8%,酶解时间缩短1.5h。   相似文献   

15.
摘 要: 本文以大米蛋白为原料,研究了碱性蛋白酶酶解法制备黄嘌呤氧化酶(Xanthine Oxidase,XOD)活性抑制肽,并对其体外功能活性进行评价。研究了蛋白酶种类、底物浓度、酶解温度、加酶量、酶解pH、酶解时间对大米蛋白水解度(degree of hydrolysis,DH)及酶解产物对黄嘌呤氧化酶活性抑制率的影响,探讨了不同超声处理方式对酶解过程的影响,通过响应面法对实验条件进行了优化结果如下:采用碱性蛋白酶,底物浓度5 %,酶解温度为56 ℃,加酶量为8000 U/g,酶解pH为10,超声功率70 W,超声酶解60 min,对所制备的大米蛋白黄嘌呤氧化酶活性抑制肽的功能活性进行了评价。在最优条件下其黄嘌呤氧化酶抑制活性的IC50为1.55 mg/mL, ABTS自由基清除作用、羟基自由基清除作用、DPPH自由基清除作用的IC50值分别为0.49、12.48、3.88 mg/mL。  相似文献   

16.
本文在单因素实验的基础上用响应面法优化了超声辅助酶提取油莎豆ACE(angiotensin converting enzyme)抑制肽工艺,并通过对血管紧张素转化酶的抑制实验选取了最佳辅助酶。结果表明,底物浓度3%、超声处理20 min、酶解温度45 ℃、加酶量5000 U/g、超声功率180 W、酶解3 h是超声波辅助酶法提取油莎豆ACE抑制肽的最佳工艺条件,最佳辅助酶-碱性蛋白酶,在此条件下ACE抑制率为74.16%。本研究为提取油莎豆ACE抑制肽提取了一定理论依据,为进一步研究油莎豆ACE抑制肽奠定了基础。  相似文献   

17.
以工厂生产的双孢菇菇柄、异形菇等边角料为原料,利用碱溶酸沉法提取双孢菇蛋白,超声波处理后,分别选用胰蛋白酶、碱性蛋白酶和复合蛋白酶对其进行酶解,通过测定蛋白水解度和ACE抑制率确定最佳的蛋白酶种类。采用响应面设计方法,优化蛋白酶酶解工艺条件,以期获得更高ACE抑制率的活性肽。结果表明,碱性蛋白酶酶解双孢菇蛋白产生的ACE抑制率最大,其最优酶解工艺参数为:碱性蛋白酶添加量6.25 mg/100 m L,酶解温度40.47℃,酶解时间92.97 min,酶解pH值8.04,此时ACE抑制率可达43.75%,在该条件下的验证试验测得水解液的ACE抑制率为43.4%,与预测值相近。经真空冷冻干燥,制得具有抑制ACE活性的肽样品,得率为24.36 mg/g,工业化生产前景良好,可为双孢菇产业边角料高值利用提供新途径。  相似文献   

18.
以牡丹籽粕为原料,用酶解法制备ACE抑制肽及其稳定性研究。以血管紧张素转化酶(angiotension converting enzyme,ACE)抑制率为指标,从中性蛋白酶、碱性蛋白酶、胃蛋白酶、胰蛋白酶和风味蛋白酶中筛选出最佳ACE抑制肽制备酶为中性蛋白酶。以单因素实验为基础,进行酶解条件的响应面优化,结果显示牡丹籽ACE抑制肽酶法制备的最优条件为:底物浓度2%,pH7.5,加酶量7200 U/g,酶解温度43℃,酶解时间2 h,此时酶解液ACE抑制率可达到86.93%±2.38%。此外,稳定性分析显示该ACE抑制肽具有良好的温度和酸碱稳定性,在温度20~100℃与pH2~10的环境下,ACE抑制活性没有显著变化(P>0.05),并且经过体外胃肠模拟消化后,ACE抑制活性变化不显著(P>0.05),仍能保持良好的抑制活性。  相似文献   

19.
目的:开发米糠新产品。方法:以ACE抑制率为指标,通过单因素和响应面试验对米糠蛋白进行酶解工艺优化研究,并对最优酶解物活性肽进行超滤分离、活性评价和氨基酸组成分析。结果:米糠蛋白最优酶解工艺条件为:pH 7.2,底物质量浓度8.2 g/100 mL,酶解温度46 ℃,酶解时间3 h,酶添加量0.3 g/100 g米糠蛋白,在此条件下所得酶解物ACE抑制率为(73.15±0.64)%,而且酶解物含有丰富的疏水性氨基酸(23.09 g/100 g);活性分析表明,分子量<3 kDa活性肽组分在同质量浓度(1.0 mg/mL)下ACE抑制活性[(81.68±1.08)%]优于分子量>3 kDa活性肽组分[(58.65±2.21)%]和酶解物[(72.64±1.61)%]。结论:米糠蛋白酶解物具有显著的ACE抑制活性,活性肽组分的分子量对ACE抑制活性具有显著影响。  相似文献   

20.
采用固定化碱性蛋白酶水解花生蛋白制备ACE抑制肽。以短肽生成率和ACE抑制率作为评价指标,通过响应面优化设计获得最佳的酶解条件为:加酶量1767μ/g蛋白,酶解时间143min,酶解pH为10.00,酶解温度取45℃,获得的短肽生成率和ACE抑制率为82.67%和83.48%。此外,适当增加水解度可以提高酶解产物的ACE抑制活性,但过度水解会导致ACE抑制率下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号