首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the tachykinin receptors involved in the contraction of the circular muscle of dog colon has been investigated. The following rank order of potency for agonists was obtained: [Sar9,Met(O2)11]substance P > or = neurokinin A > [beta-Ala8]neurokinin A-(4-10) > [MePhe7]neurokinin B. The efficacy of the tachykinin NK2 receptor agonists was significantly greater than that of the tachykinin NK1 receptor agonists and of carbachol. A concentration-dependent rightward shift of the motor response to neurokinin A (obtained in the presence of (+/-)-CP 96,345) was induced by peptide and non-peptide tachykinin NK2 receptor antagonists with this rank order: MEN 10,627 = SR 48,968 > L 659,877 > MEN 10,376 > MDL 28,564. MEN 10,627 and SR 48,968 affinities were similar to those measured in human tissues. In conclusion, the tachykinin NK2 receptor plays a predominant role in tachykinin-induced contraction of the canine colonic circular muscle and this tissue could be useful to predict the pharmacological actions of MEN 10,627 and SR 48,968 in human colon.  相似文献   

2.
Distension of a balloon placed in the proximal colon of anesthetized, guanethidine- and naloxone-pretreated guinea pigs elicited a series of long-lasting regular phasic pressure waves which were suppressed by hexamethonium. Activity evoked by a low degree of balloon distension was largely, but not completely, suppressed by atropine. Further balloon distension in atropine-treated animals enabled us to study the effect of tachykinin receptor antagonists on the atropine-resistant and hexamethonium-sensitive response to distension. The selective tachykinin receptor antagonists, (+/-)-CP 96,345 for the NK-1 receptor and L 659,877, MEN 10,376 and SR 48,968 for the NK-2 receptor, inhibited with varying potency the atropine-resistant response to distension. These antagonists also blocked the contraction of the guinea pig colon produced by the i.v. administration of selective NK-1 and NK-2 receptor agonists. In vitro experiments, using mucosa-free circular muscle strips from the guinea pig colon, proved the existence of functional NK-1 and NK-2 receptors in this tissue. We conclude that both NK-1 and NK-2 receptors participate in the atropine-resistant reflex contractions produced by localized balloon distension of the guinea pig colon in vivo.  相似文献   

3.
Using the sucrose-gap technique, we attempted to assess a role for tachykinins (TKs) in mediating noncholinergic excitatory junction potential (EJP) and contraction, in the circular muscle of rat proximal colon. Excitatory responses were evoked by submaximal electrical field stimulation (EFS) in the presence of atropine (1 microM), guanethidine (1 microM), indomethacin (10 microM), and N(omega)-nitro-L-arginine methyl ester (L-NAME) (100 microM). The NK1 receptor antagonist, SR 140,333 (up to 3 microM) or the NK2 receptor antagonists, SR 48,968 and MEN 10,627 (up to 5 microM) produced a partial inhibition of the excitatory responses to EFS. The co-administration of the selective NK1 and NK2 receptor antagonists produced additive effects on the responses to EFS. Selective NK1 receptor agonist, [Sar9, Met (O2)11]-substance P, induced depolarization and contraction, antagonized by SR 140,333, but not by NK2 receptor antagonists. NK2 receptor agonist, [betaAla8]-neurokinin A (4-10), also produced electrical and mechanical excitatory effects that were antagonized by SR 48,968 or MEN 10,627, but not by the NK1 receptor antagonist. Our results provide evidence that, in circular muscle of rat colon, endogenous tachykinins are the main excitatory transmitters for nonadrenergic, noncholinergic (NANC) excitation and their action is mediated by both NK1 and NK2 receptors.  相似文献   

4.
Application of electrical field stimulation (EFS; trains of 10 Hz, 0.25 ms pulse width, supramaximal voltage for 60 s) to the guinea-pig isolated common bile duct pretreated with atropine (1 microM), produced a slowly-developing contraction ('on' response) followed by a quick phasic 'off' contraction ('off peak' response) and a tonic response ('off late' response), averaging 16+/-2, 73+/-3 and 20+/-4% of the maximal contraction to KCl (80 mM), n=20 each, respectively. Tetrodotoxin (1 microM; 15 min before) abolished the overall response to EFS (n 8). Neither in vitro capsaicin pretreatment (10 microM for 15 min), nor guanethidine (3 microM, 60 min before) affected the excitatory response to EFS (n 5 each), showing that neither primary sensory neurons, nor sympathetic nerves were involved. Nomega-nitro-L-arginine (L-NOARG, 100 microM, 60 min before) or naloxone (10 microM, 30 min before) significantly enhanced the 'on' response (294+/-56 and 205+/-25% increase, respectively; n=6-8, P<0.01) to EFS. The combined administration of L-NOARG and naloxone produced additive enhancing effects (655+/-90% increase of the 'on' component, n = 6, P<0.05). The tachykinin NK2 receptor-selective antagonist MEN 11420 (1 microM) almost abolished both the 'on' and 'off late' responses (P<0.01: n=5 each) to EFS, and reduced the 'off-peak' contraction by 55+/-8% (n=5, P<0.01). The subsequent administration of the tachykinin NK1 receptor-selective antagonist GR 82334 (1 microM) and of the tachykinin NK3 receptor-selective antagonist SR 142801 (30 nM), in the presence of MEN 11420 (1 microM), did not produce any further inhibition of the response to EFS (P>0.05; n=5 each). At 3 microM, GR 82334 significantly reduced (by 68+/-9%, P<0.05, n=6) the 'on' response to EFS. The contractile 'off peak' response to EFS observed in the presence of both MEN 11420 and GR 82334 (3 microM each) was abolished (P<0.01; n=6) by the administration of the P2 purinoceptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 30 microM). PPADS (30 microM) selectively blocked (75+/-9 and 50+/-7% inhibition, n = 4 each) the contractile responses produced by 100 and 300 microM ATP. Tachykinin-containing nerve fibres were detected by using immunohistochemical techniques in all parts of the bile duct, being distributed to the muscle layer and lamina propria of mucosa. In the terminal part of the duct (ampulla) some labelled ganglion cells were observed. In conclusion, this study shows that in the guinea-pig terminal biliary tract tachykinins, released from intrinsic neuronal elements, are the main NANC excitatory neurotransmitters, which act by stimulating tachykinin NK2 (and possibly NK1) receptors. ATP is also involved as excitatory neurotransmitter. Nitric oxide and opioids act as inhibitory mediators/modulators in this preparation.  相似文献   

5.
The mammalian tachykinins, neurokinin A (NKA) and NKA(4-10), along with the tachykinin NK2 receptor-selective antagonist MEN 10,376, were compared to their C-terminal free acid derivatives, NKA-OH, NKA(4-10)-OH and MEN 10,456, respectively, on several in vitro bioassays for NK1, NK2 and NK3 tachykinin receptors. NKA-OH and NKA(4-10)-OH were much weaker agonists than NKA or NKA(4-10) in the endothelium-deprived rabbit pulmonary artery (endowed with NK2A receptors) and in the guinea pig isolated bronchus (endowed with NK2A and NK1 receptors), where they produced submaximal contractile responses, and were inactive in the hamster isolated trachea (endowed with NK2B receptors) and in the rat isolated portal vein (endowed with NK3 receptors). At NK1 receptors of the guinea pig isolated ileum, NKA-OH produced weak agonist responses, whereas NKA(4-10)-OH was ineffective. In sharp contrast, MEN 10,456, while maintaining the same antagonist potency of the parent compound MEN 10,376 in the rabbit pulmonary artery and hamster isolated trachea, developed a clear-cut agonist character in the rat isolated portal vein, guinea pig isolated ileum and guinea pig isolated bronchus. The agonist responses produced by MEN 10,456 (10 microM) were reduced by MEN 10,376 in the guinea pig isolated bronchus and by the NK1 receptor antagonist GR 82,334 in the guinea pig isolated ileum. These results, although indicating the importance of C-terminal amidation for the agonist activity of natural tachykinins, suggest that the C-terminal amide group may not be directly involved in stimulation of the tachykinin receptors, but could induce agonist activity through a conformation effect.  相似文献   

6.
1. In isolated tissue experiments, neurokinin A (NKA) produced concentration-dependent contraction of human and guinea-pig ureter (pD2 = 6.7 and 7.2, respectively); an effect greatly reduced (>80% inhibition) by the tachykinin NK2 receptor-selective antagonist MEN 11420 (0.1 microM). The tachykinin NK1 and NK3 receptor agonists septide and senktide, respectively, were ineffective. 2. Electrical field stimulation (EFS) of the guinea-pig isolated renal pelvis produced an inotropic response blocked by MEN 11420 (0.01-1 microM). In the same preparation MEN 11420 (0.1 microM) blocked (apparent pK(B) = 8.2) the potentiation of spontaneous motor activity produced by the NK2 receptor-selective agonist [betaAla8]NKA(4-10). 3. In sucrose-gap experiments, EFS evoked action potentials (APs) accompanied by phasic contractions of human and guinea-pig ureter, which were unaffected by tetrodotoxin or MEN 11420 (3 microM), but were blocked by nifedipine (1-10 microM). NKA (1-3 microM) produced a slow membrane depolarization with superimposed APs and a tonic contraction with superimposed phasic contractions. NKA prolonged the duration of EFS-evoked APs and potentiated the accompanying contractions. MEN 11420 completely prevented the responses to NKA in both the human and guinea-pig ureter. 4. Nifedipine (1-10 microM) suppressed the NKA-evoked APs and phasic contractions in both human and guinea-pig ureter, and slightly reduced the membrane depolarization induced by NKA. A tonic-type contraction of the human ureter in response to NKA persisted in the presence of nifedipine. 5. In conclusion, tachykinins produce smooth muscle excitation in both human and guinea-pig ureter by stimulating receptors of the NK2 type only. NK2 receptor activation depolarizes the membrane to trigger the firing of APs from latent pacemakers.  相似文献   

7.
1. Neuromuscular transmission in the circular muscle of the canine proximal colon was examined, in the presence and absence of nitric oxide synthase inhibitors, by use of mechanical and intracellular microelectrode recording techniques. 2. Electrical field stimulation (EFS; 0.1-20 HZ) produced frequency-dependent contractions of circular muscle strips which reached a maximum at 15 Hz. These responses were enhanced by NG-monomethyl-L-arginine (L-NMMA; 300 microM) and reduced by atropine (1 microM). The effects of L-NMMA were reversed by L-arginine (3 mM). All responses to EFS were abolished by tetrodotoxin (1 microM). 3. In the presence of atropine, phentolamine and propranolol (all at 1 microM; 'non-adrenergic, non-cholingergic (NANC) conditions'), EFS evoked frequency-dependent inhibition of phasic contractions which reached a maximum at 5 Hz. At higher frequencies of EFS, inhibition diminished, and these responses were followed by post-stimulus excitation. 4. Under NANC conditions and in the presence of L-NG-nitroarginine methyl ester (L-NAME; 200 microM), EFS evoked contractions at frequencies of 5 Hz or greater. These contractions were reduced by co-incubation with L-arginine (2 mM) and abolished by tetrodotoxin (1 microM). 5. In the presence of atropine (1 microM), EFS (5-20 Hz) caused frequency-dependent inhibition of electrical slow waves. In the presence of L-NAME (100 microM) and atropine, the inhibitory response to EFS was abolished and an increase in slow wave duration was seen at stimulation frequencies greater than 5 Hz. The effects of EFS on slow wave duration were abolished by tetrodotoxin (1 microM). 6. Atropine-resistant contractions to EFS were enhanced by indomethacin (10 microM) and reduced or abolished by the non-selective NK1/NK2 tachykinin receptor antagonist D-Pro2, D-Trp7,9 SP, and by the selective NK2 receptor antagonist MEN 10,376 (10 microM).7. Exogenous tachykinins mimicked non-cholinergic excitatory electrical and mechanical responses. The rank order of potency for contraction was neurokinin A>neurokinin B>substance P, suggesting a predominance of the NK2 sub-type of tachykinin receptors on colonic smooth muscle cells. Low concentrations of neurokinin A also increased the amplitude and duration of electrical slow waves.8. These results suggest that: (i) in previous studies, non-cholinergic excitatory responses were masked by the simultaneous release of NO; (ii) non-cholinergic excitatory responses occur throughout the period of stimulation and are not manifest only as 'rebound' excitation; (iii) one or more tachykinins, possibly,acting via NK2 receptors, may mediate non-cholinergic excitatory responses.  相似文献   

8.
1. Incubation of proximal segments of the rat isolated duodenum with NG-nitro-L-arginine (L-NOARG; 3-100 microM) produced a concentration-dependent increase in both resting tone and the amplitude of the spontaneous contractions. These effects were attenuated by concurrent incubation with L-arginine (1 mM) but not D-arginine (1 mM). 2. These changes in resting tone and motility induced by L-NOARG (30 microM) were substantially reduced by concurrent incubation with tetrodotoxin (1 microM) or hexamethonium (10 microM), implicating the involvement of a local neuronal response. 3. The L-NOARG-induced increase in duodenal motility was not, however, inhibited by atropine (1 microM), guanethidine (6.4 microM) phentolamine (1 microM), or indomethacin (10 microM), indicating a non-cholinergic, non-adrenergic and non-prostanoid-mediated contractile response. 4. The NK1/NK2 tachykinin receptor antagonist, (D-Pro2, D-Trp7.9 substance P, 1-10 microM), and the NK2-receptor antagonists, MEN 10,207 and MEN 10,376 (1-5 microM), concentration-dependently reduced the effect of L-NOARG (30 microM) on spontaneous duodenal motility. 5. The resting tone and amplitude of the spontaneous contractions was likewise increased by incubation with NG-monomethyl-L-arginine (L-NMMA; 100-1000 microM). However, incubation with L-NMMA (100 microM) attenuated the actions of more potent L-NOARG (30 microM) on resting motility. 6. Administration of E.coli endotoxin (3 mg kg-1, i.v.) to the rat 5 h prior to tissue removal, at a time of known induction of NO synthase, reduced the amplitude of spontaneous contractions of the isolated duodenum, an effect inhibited by pretreatment of the rats with dexamethasone (1 mg kg-1) 2 h prior to endotoxin challenge. 7. These findings indicate a role of endogenous NO in the modulation of spontaneous tone and motility in the rat duodenum. Induction of NO synthase may result in a reduction in spontaneous motility of the tissue. By contrast, inhibition of constitutive NO biosynthesis unmasks a contractile response that is neuronally mediated and involves tachykinin NK2 receptors.  相似文献   

9.
We have examined the effect of various natural and synthetic tachykinins on the steady state Ca(++)-rise ([Ca++]i) in transfected chinese hamster ovary cells expressing recombinant human Neurokinin 2 (NK2) receptors. The rank order of potency with natural tachykinins was NeurokininA > Neurokinin B > Eledoisin > Physaelamin > substance P. The selective NK2 agonist, [beta-Ala8]NKA(4-10) was very potent, with an EC50 value of 4.83 x 10(-9) M whereas Senktide, MePhe7NKB and Sar9, (MetO2)11 substance P, selective NK3 and NK1 agonists, respectively, did not have any effect on [Ca++]i in hrNK2CHO cells, suggesting a selective and preferential recognition and activation of NK2 receptors in these cells. (+/-) SR 48968, a selective NK2 antagonist, abolished the beta-AlaNKA-induced [Ca++]i with an IC50 value of 0.7 nM. Two other peptidic NK2 antagonists, MEN 10376 and L-658977, were less active with IC50 values of 49 nM and 5.29 microM, respectively. In contrast, (+/-) CP-96,345 and (+/-)CP-99,994 and RP 67580, all selective NK1 antagonists, did not have any effect on the beta-AlaNKA-induced [Ca++]i in hrNK2CHO cells (+/-) SR 140333, a potent and selective NK1 antagonist, had a 35% inhibition under similar conditions. These data demonstrate a high selectivity and sensitivity to NK2 receptor mediated [Ca++]i in rhNK2R-CHO cells and may be of value as a rapid, selective test of drug action at the human NK2 receptors in vitro.  相似文献   

10.
1. Electrical field stimulation (EFS) of the superfused lower oesophageal sphincter from opossum (Monodelphis domestica) elicited biphasic responses. The first phase (relaxation) was strictly dependent on the duration of the EFS. The second phase (contraction) started following termination of the EFS (< or = 15 Hz). EFS at frequencies above 15 Hz led only to contraction, which started immediately upon initiation of the stimulation. 2. In the presence of NG-nitro-L-arginine (L-NOARG; 0.1-300 microM), the relaxation phase was abolished and the contractile response started with the initiation of EFS (at all frequencies) and was greater in magnitude. The contractile response to EFS was completely blocked with scopolamine (10 microM). 3. Exogenous acetylcholine (1-100 microM) elicited concentration-dependent contractions of the sphincter in the presence of botulinum toxin. These contractions were abolished when EFS was applied during administration of acetylcholine. This inhibitory effect of EFS was completely reversed when the tissue was treated with L-NOARG (100 microM). 4. These results suggest that the cholinergic response in the opossum lower oesophageal sphincter is under nitrergic control.  相似文献   

11.
1. In the presence of NG-nitro-L-arginine (L-NOARG, 0.3 mM) and indomethacin (10 microM), the relaxations induced by acetylcholine and the calcium (Ca) ionophore A23187 are considered to be mediated by endothelium-derived hyperpolarizing factor (EDHF) in the guinea-pig basilar artery. 2. Inhibitors of adenosine 5'-triphosphate (ATP)-sensitive potassium (K)-channels (KATP; glibenclamide, 10 microM), voltage-sensitive K-channels (Kv; dendrotoxin-1, 0.1 microM or 4-aminopyridine, 1 mM), small (SKCa; apamin, 0.1 microM) and large (BKCa; iberiotoxin, 0.1 microM) conductance Ca-sensitive K-channels did not affect the L-NOARG/indomethacin-resistant relaxation induced by acetylcholine. 3. Synthetic charybdotoxin (0.1 microM), an inhibitor of BKCa and Kv, caused a rightward shift of the concentration-response curve for acetylcholine and reduced the maximal relaxation in the presence of L-NOARG and indomethacin, whereas the relaxation induced by A23187 was not significantly inhibited. 4. A combination of charybdotoxin (0.1 microM) and apamin (0.1 microM) abolished the L-NOARG/ indomethacin-resistant relaxations induced by acetylcholine and A23187. However, the acetylcholine-induced relaxation was not affected by a combination of iberiotoxin (0.1 microM) and apamin (0.1 microM). 5. Ciclazindol (10 microM), an inhibitor of Kv in rat portal vein smooth muscle, inhibited the L-NOARG/ indomethacin-resistant relaxations induced by acetylcholine and A23187, and the relaxations were abolished when ciclazindol (10 microM) was combined with apamin (0.1 microM). 6. Human pial arteries from two out of four patients displayed an L-NOARG/indomethacin-resistant relaxation in response to substance P. This relaxation was abolished in both cases by pretreatment with the combination of charybdotoxin (0.1 microM) and apamin (0.1 microM), whereas each toxin had little effect alone. 7. The results suggest that Kv, but not KATP and BKCa, is involved in the EDHF-mediated relaxation in the guinea-pig basilar artery. The synergistic action of apamin and charybdotoxin (or ciclazindol) could indicate that both Kv and SKCa are activated by EDHF. However, a single type of K-channel, which may be structurally related to Kv and allosterically regulated by apamin, could also be the target for EDHF.  相似文献   

12.
To study the mechanisms of wood smoke-induced bronchoconstriction, we measured total lung resistance (RL) and dynamic lung compliance (Cdyn) in anesthetized and mechanically ventilated guinea pigs. Airway exposure to various doses of wood smoke (lauan wood; 5, 10, and 15 breaths) resulted in a dose-dependent increase in RL and decrease in Cdyn. The smoke-induced changes in RL and Cdyn were significantly attenuated by pretreatment with atropine, CP-96,345 [(2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-aza bicyclo(2.2.2.)-octan-3-amine; a tachykinin NK1 receptor antagonist], and SR-48,968 [(S)-N-methyl-N(4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophen yl)-butyl)benzamide; a tachykinin NK2 receptor antagonist] in combination, atropine alone, and SR-48,968 alone, but were not significantly affected by pretreatment with the inactive enantiomers of CP-96,345 and SR-48,968, CP-96,345 alone, indomethacin (a cyclooxygenase inhibitor), and MK-571 [((3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl((3-dimethyl amino-3-oxo-propyl)thio)methyl)propanoic acid; a leukotriene D4 receptor antagonist]. The activity of airway neutral endopeptidase, a major enzyme for tachykinin degradation, was not significantly influenced by wood smoke during the development of bronchoconstriction. We conclude that: (1) both cholinergic mechanisms and endogenous tachykinins, but not cyclooxygenase products or leukotriene D4, play an important role in the acute bronchoconstriction induced by wood smoke, and (2) the contribution of tachykinins to this airway response is primarily mediated via the activation of tachykinin NK2 receptors, but is not associated with inactivation of the airway neutral endopeptidase.  相似文献   

13.
1. The characteristic features of the endothelium-mediated regulation of the electrical and mechanical activity of the smooth muscle cells of cerebral arteries were studied by measuring membrane potential and isometric force in endothelium-intact and -denuded strips taken from the rabbit middle cerebral artery (MCA). 2. In endothelium-intact strips, histamine (His, 3-10 microM) and high K+ (20-80 mM) concentration-dependently produced a transient contraction followed by a sustained contraction. Noradrenaline (10 microM), 5-hydroxytryptamine (10 microM) and 9,11-epithio-11, 12-methano-thromboxane A2 (10 nM) each produced only a small contraction (less than 5% of the maximum K+-induced contraction). 3. N(G)-nitro-L-arginine (L-NOARG, 100 microM), but not indomethacin (10 microM), greatly enhanced the phasic and the tonic contractions induced by His (1-10 microM) in endothelium-intact, but not in endothelium-denuded strips, suggesting that spontaneous or basal release of nitric oxide (NO) from endothelial cells potently attenuates the His-induced contractions. Acetylcholine (ACh, 0.3-3 microM) caused concentration-dependent relaxation (maximum relaxation by 89.7 +/- 7.5%, n=4, P<0.05) when applied to endothelium-intact strips precontracted with His. L-NOARG had little effect on this ACh-induced relaxation (n=4; P<0.05). Apamin (0.1 microM), but not glibenclamide (3 microM), abolished the relaxation induced by ACh (0.3-3 microM) in L-NOARG-treated strips (n=4, P<0.05). 4. In endothelium-intact tissues, His (3 microM) depolarized the smooth muscle membrane potential (by 4.4 +/- 1.8 mV, n = 12, P < 0.05) whereas ACh (3 microM) caused membrane hyperpolarization (-20.9 +/- 3.0 mV, n = 25, P< 0.05). The ACh-induced membrane hypepolarization persisted after application of L-NOARG (-23.5 +/- 5.9 mV, n=8, P<0.05) or glibenclamide (-20.6 +/- 5.4 mV, n=5, P<0.05) but was greatly diminished by apamin (reduced to - 5.8 +/- 3.2 mV, n = 3, P< 0.05). 5. Sodium nitroprusside (0.1-10 microM) did not hyperpolarize the smooth muscle cell membrane potential (0.2 +/- 0.3 mV, n=4, P>0.05) but it greatly attenuated the His-induced contraction in endothelium-denuded strips (n-4, P<0.05). 6. These results suggest that, under the present experimental conditions: (i) spontaneous or basal release of NO from endothelial cells exerts a significant negative effect on agonist-induced contractions in rabbit MCA, and (ii) ACh primarily activates the release of endothelium-derived hyperpolarizing factor (EDHF) in rabbit MCA.  相似文献   

14.
Tachykinins released from sensory nerves mediate, at least in part, the plasma extravasation induced by allergen challenge to the airways of sensitized guinea pigs. We investigated the role of kinins in this activation of sensory nerves. We found that the increase in Evans blue dye extravasation evoked by aerosol of bradykinin (100 microM, 2 min) in the presence of phosphoramidon (2.5 mg/kg, i.v.) was abolished completely by the selective B2 bradykinin antagonist, HOE 140 (0.1 mumol/kg, i.v.), and was inhibited (60%) by the selective NK1 tachykinin receptor antagonist, CP-96,345 (2 mumol/kg, i.v.). Plasma extravasation evoked by aerosolized substance P (10 microM/kg, 2 min) in presence of phosphoramidon was abolished by CP-96,345, but was not affected by HOE 140. The extravasation of the Evans blue dye evoked by OVA (5%, 2 min) in sensitized guinea pigs was reduced by HOE 140 (45%) when the animals were perfused after 5 min and by 39% when perfusion was performed at 10 min. In the presence of phosphoramidon, the response to OVA at 10 min was reduced by 57% by HOE 140 and by 72% by CP-96,345. The combination of CP-96,345 and HOE 140 did not further increase the inhibition obtained with CP-96,345 alone. The results provide evidence that the activation of sensory nerves that contribute to Ag-evoked plasma extravasation is due to kinin release. The contribution of this cascade of events may be exaggerated in pathophysiologic conditions in which neutral endopeptidase is down-regulated.  相似文献   

15.
PURPOSE: We evaluated the changes in cholinergic and purinergic neurotransmission in pathologic bladder of chronic spinal rabbits. MATERIAL AND METHODS: Detrusor muscle strips were obtained from normal rabbits and chronic spinal rabbits with detrusor hyperreflexia and detrusor sphincter dyssynergia (DSD). Muscle strips were mounted in an organ bath, and transmural nerve electrical field stimulation (EFS: supamaximal voltage, 0.5 msec. duration, 10 second trains) was performed. The responses to EFS and agonists were determined by recording the isometric tension of muscle strips. RESULTS: Both normal and pathologic detrusor strips contracted in a frequency dependent fashion in response to transmural electrical nerve stimulation. At each frequency, atropine reduced the nerve-mediated contraction in a dose-dependent fashion and left an atropine-resistant response at a concentration of 1 microM. The atropine-resistant contraction was abolished by desensitization of P2X-purinoceptors with repeated exposure to alpha, beta-methylene ATP (10 microM). The atropine sensitive (cholinergic) and resistant (purinergic) contractions increased with an increase in frequency and reached maximum at 20 Hz. The relative contribution of cholinergic and purinergic transmission to the nerve-mediated contraction was determined at this frequency. In normal detrusor, the cholinergic and purinergic components were approximately 40% and 60%. In pathologic detrusor, the cholinergic component increased to 75% whereas the purinergic component decreased to 25%. Exogenously administered acetylcholine and ATP produced dose-dependent contractions of detrusor strips. The concentration-response curves for each agonist did not show significant differences between normal and pathologic detrusor. CONCLUSION: These results suggest that neurotransmission is shifted to a cholinergic dominance in pathologic rabbit bladder affected by detrusor hyperreflexia and DSD.  相似文献   

16.
1. The modulatory effects of L-glutamate and its structural analogues, and of gamma-aminobutyric acid (GABA), on sympathetic co-transmission were studied in the rat isolated vas deferens exposed to electrical field stimulation (EFS). 2. Application of exogenous L-glutamate caused a concentration-dependent (1 microM-3 mM) inhibition of the rapid twitch component of the biphasic EFS contraction. However, L-glutamate (1 microM-3 mM) had a minimal effect on the phasic contraction induced by exogenous adenosine 5'-triphosphate (ATP, 150 microM) and noradrenaline (50 microM). Unlike L-glutamate, D-glutamate had no effect on the EFS contraction. 3. The L-glutamate-induced inhibition of the EFS contractions was significantly attenuated by the glutamate decarboxylase (GAD) inhibitor 3-mercapto-propionic acid (150 microM) and was abolished in the presence of the GABA transaminase (GABA-T) inhibitor, 2-aminoethyl hydrogen sulphate (500 microM). 4. The L-glutamate-induced inhibition of the electrically evoked contraction was not affected by the adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)(30 nM), reactive blue 2 (30 microM) or the GABAA receptor antagonist bicuculline (50 microM). However, the GABAB receptor antagonist 2-hydroxysaclofen (50 microM) significantly inhibited the L-glutamate effect. 5. Similar to L-glutamate, GABA also caused a concentration-dependent (0.1-100 microM) inhibition of the EFS contractions. This GABA-induced inhibition was not affected by either the GABAA receptor antagonist bicuculline (50 microM) or reactive blue 2 (30 microM). However, a significant attenuation of the GABA-mediated effect was recorded with the GABAB receptor antagonist 2-hydroxysaclofen (50 microM). Contractions of the vas deferens induced by exogenous ATP and noradrenaline were not affected by GABA (0.1-100 microM). 6. The L-glutamate analogues, N-methyl-D-aspartate (NMDA) (1 microM-1 mM) and quisqualate (Quis 0.1 microM-0.3 mM) had no effect, whilst kainate (Kain, 1 microM-1 mM) caused an inhibition of the EFS-induced contractions. Effects of Kain could be abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dioxine (CNQX, 10 microM). NMDA, Quis and Kain had no effect on the exogenous ATP- or noradrenaline-induced contractions. 7. It is concluded that the excitatory amino acid L-glutamate modulates the electrically evoked vas deferens contraction through conversion to the inhibitory amino acid GABA by a specific GABA transaminase. The GABA formed may then act on GABAB receptors and cause inhibition of the contraction through a presynaptic mechanism.  相似文献   

17.
In vitro studies demonstrated that stimulation of intrinsic nerves of airway smooth muscle results in a predominantly contractile response, followed by a relaxant response which involves cholinergic, adrenergic and non-adrenergic non-cholinergic (NANC) nerve activation. Thus, in this paper it is determined whether endogenous nitric oxide (NO) modulates cholinergic neurotransmission in isolated pig airway smooth muscle. Bronchial rings were suspended in organ baths for isometric measurement of tension and the contractions were induced using electrical field stimulation (EFS) techniques. Then, the effects of L-NG-nitroarginine (L-NOARG, 10 microM), an inhibitor of NO synthase, and L-arginine (L-ARG, 1 mM), a precursor of NO synthesis, were evaluated. The cholinergic contractions induced by electrical field stimulation (EFS: 60 V, 2 ms, 60 Hz) of pig lobar bronchial preparations increased (29%) in the presence of L-NOARG (10 microM). This effect may be released by nerves in pig large airways during EFS.  相似文献   

18.
In adult rats response latencies to innocuous mechanical stimuli were found to be reduced and, in electrophysiological studies, the receptive fields of dorsal horn neurones were enlarged 7-14 days after chronic constriction injury of the sciatic nerve. The NK1 receptor antagonist GR205171 at 3 mg kg(-1) blocked responses to NK1 agonist evoked activity and reversed the mechanical hypersensitivity following nerve ligation in behavioural assays. GR205171 also reversed the receptive field expansion of spinal dorsal horn neurones caused by loose ligation of the sciatic nerve in an electrophysiological assay in anaesthetised rats. The less active enantiomer L-796,325 did not block NK1 agonist evoked activity at up to 10 mg kg(-1) and had no effect on behavioural or electrophysiological changes following nerve injury, indicating that the effects of GR205171 were attributable to selective NK1 receptor blockade. These data suggest that NK1 receptor antagonists may be useful for the treatment of certain types of neuropathic pain.  相似文献   

19.
The smoke-induced airway hyperresponsiveness (SIAHR) to inhaled wood smoke was investigated in anesthetized guinea pigs. Two smoke challenges (each 10 ml) separated by 30 min were delivered into the lungs by a respirator. In control animals, SIAHR was evidenced by an average bronchoconstrictive response (an increase in total lung resistance) to the second smoke challenge (SM2) that was approximately 4.3-fold greater than that to the first challenge (SM1). Pretreatment with CP-96,345 and SR-48,968 (neurokinin-1 and -2 receptor antagonists; each 1 mg/kg) in combination totally prevented this SIAHR, while pretreatment with CP-96,344 and SR48,965 (inactive enantiomers of CP-96,345 and SR-48,968, each 1 mg/kg) in combination failed to do so. Pretreatment with CP-96,345 (1 mg/kg), SR48,968 (1 mg/kg), or atropine (50 microg/kg) significantly alleviated this SIAHR. Pretreatment with phosphoramidon [an inhibitor of neutral endopeptidase (NEP); 2 mg/kg], which suppresses the degradation of tachykinins, induced an increase in airway reactivity that largely mimicked this SIAHR. The NEP activity measured in airway tissues excised 30 min after SM1 was significantly lower than that in air control value. These results suggest that 1) a prior wood smoke exposure induces an airway hyperresponsiveness to the subsequent wood smoke inhalation, 2) a tachykininergic mechanism involving both neurokinin-1 and -2 receptors is essential for, and a cholinergic mechanism is also involved in the development of this SIAHR, and 3) inactivation of airway NEP by wood smoke may contribute to this SIAHR.  相似文献   

20.
The aim of the present study was to investigate the role of certain subtypes of K+ channels in nerve-evoked contractions of pulmonary artery in vitro. The lobar or segmental pulmonary arteries were dissected from dogs, cut into ring segments, and the contractile responses to electrical field stimulation (EFS) and noradrenaline were measured under isometric conditions. Addition of iberiotoxin, a big conductance Ca2+-activated K+ channel blocker, and apamin, a small conductance Ca2+-activated K+ channel blocker, did not change the resting tension but augmented the contractile responses to EFS, so that the electric stimulus frequency required to produce a half-maximal contraction (ES50) was decreased from 18.2+/-3.5 to 7.4+/-2.3 Hz (p<0.01) and from 16.8+/-2.2 to 11.4+/-2.0 Hz (p<0.05), respectively, whereas glibenclamide, an adenosine triphosphate (ATP)-sensitive K+ channel blocker, had no effect. In contrast, none of the K+ channel blockers altered the contractile response to noradrenaline. Incubation of tissues with iberiotoxin and apamin increased the release of 3H-noradrenaline evoked by EFS. We conclude that big conductance Ca2+-activated K+ channels and small conductance Ca2+-activated K+ channels may play a role in the regulation of adrenergic neurotransmission in the pulmonary artery, probably by inhibiting the exocytotic release of noradrenaline from the adrenergic nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号