首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以城市污泥为原料制备出污泥基生物炭,并通过硝酸改性得到硝酸改性污泥基生物炭(SSB-AO),探究了SSB-AO投加量、溶液初始pH、离子强度、吸附时间、U(Ⅵ)初始质量浓度以及吸附温度等对SSB-AO去除U(Ⅵ)的影响,通过SEM-EDS、FTIR及XPS分析SSB-AO对U(Ⅵ)的去除机理。结果表明:SSB-AO对U(Ⅵ)的吸附符合拟二级动力学模型,吸附过程以化学吸附为主;等温吸附过程符合Langmuir模型。在30 ℃、NaNO3浓度为0.01 mol/L、吸附时间300 min、初始pH=6、U(Ⅵ)初始质量浓度为10~100 mg/L及SSB-AO投加量为0.6 g/L的条件下,SSB-AO去除U(Ⅵ)的理论最大吸附量为80.34 mg/g;通过5次吸附-解吸实验,其吸附率保持在88%以上,说明SSB-AO具有良好的重复使用性;SSB-AO去除U(Ⅵ)的机理为内表面络合作用、静电作用以及离子交换。研究显示硝酸处理污泥基生物炭能有效地提高其对U(Ⅵ)的吸附能力,为含U(Ⅵ)废水处理提供借鉴。  相似文献   

2.
以城市污泥为原料制备出污泥基生物炭(SSB),并通过硝酸酸化处理得到硝酸改性污泥基生物炭(SSB-AO),探究了SSB-AO投加量、溶液初始pH、离子强度、吸附时间、U(Ⅵ)初始质量浓度以及吸附温度对SSB-AO去除U(Ⅵ)的影响,通过SEM-EDS、FTIR及XPS分析SSB-AO对U(Ⅵ)的去除机理.结果表明:SS...  相似文献   

3.
简述了污泥基生物炭制备方法和吸附重金属的影响因素以及主要机理,包括物理吸附、静电吸附、离子交换、络合作用以及化学沉淀;介绍了污泥基生物炭改性方法以提高吸附重金属效果;最后对污泥基生物炭的应用进行了展望。  相似文献   

4.
5.
以稻壳、竹子和杉木屑为原料,分别在不同热解温度下热解制备生物炭(DBC、ZBC和MBC)。采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线能谱(EDS)和X射线衍射(XRD)表征其理化性质,并通过批量吸附实验研究生物炭对U(VI)的吸附特性与机理。结果表明:随着热解温度升高,3种生物炭pH值和灰分增加,产率下降,且ZBC与DBC表面更加粗糙,孔状形貌更加明显,芳香结构趋于完善,含氧官能团减少,无机元素占比增加,碳纤维结晶度降低;准二级吸附动力学模型能更好地拟合3种生物炭吸附U(VI)的过程(R22>0.96),在25℃、pH值4、固液比为1:1(g:L)的条件下3 h可达到吸附平衡;3种生物炭的吸附等温线拟合更符合Langmuir模型,以化学吸附为主,ZBC700对U(VI)的理论最大吸附量为18.55 mg/g;随着热解温度的升高,ZBC和DBC吸附U(VI)的能力增强,阳离子-π和离子交换作用贡献增加。MBC吸附U(VI)的能力与热解温度关系不明显,相同热解温度,ZBC和DBC的吸附量高于MBC。  相似文献   

6.
胡世琴  杨斌  范甲  杨金辉  张震  谢水波 《精细化工》2021,38(12):2566-2572,2585
对废弃卷烟烟叶进行炭化处理后再引入氨基功能基团制备了氨基化烟叶生物炭吸附剂(ATC),通过SEM、FTIR、XPS对ATC进行了表征,考察了pH、ATC投加量、温度、吸附时间、U(Ⅵ)初始质量浓度对ATC吸附U(Ⅵ)的影响.结果表明,在U(Ⅵ)初始质量浓度为250 mg/L、pH=6、ATC投加量为0.2 g/L、温度为40℃、吸附时间为210 min时,ATC对U(Ⅵ)的最大理论吸附量为495.04 mg/g.吸附动力学符合准二级动力学模型;Langmuir吸附等温模型能更好地描述ATC对U(Ⅵ)的吸附行为.ATC对U(Ⅵ)的吸附去除机理主要包括静电相互作用,与 —NH2、—OH、—COOH的配位络合,与Si—O—Si的"π-π"相互作用.5次吸附-解吸实验后,ATC对U(Ⅵ)的吸附率在86.71%以上.  相似文献   

7.
胡世琴  杨斌  范甲  杨金辉  张震  谢水波 《精细化工》2021,38(12):2566-2572,2585
对废弃卷烟烟叶进行炭化处理后再引入氨基功能基团制备了氨基化烟叶生物炭吸附剂(ATC),通过SEM、FTIR、XPS对ATC进行了表征,考察了pH、ATC投加量、温度、吸附时间、U(Ⅵ)初始质量浓度对ATC吸附U(Ⅵ)的影响.结果表明,在U(Ⅵ)初始质量浓度为250 mg/L、pH=6、ATC投加量为0.2 g/L、温度为40℃、吸附时间为210 min时,ATC对U(Ⅵ)的最大理论吸附量为495.04 mg/g.吸附动力学符合准二级动力学模型;Langmuir吸附等温模型能更好地描述ATC对U(Ⅵ)的吸附行为.ATC对U(Ⅵ)的吸附去除机理主要包括静电相互作用,与 —NH2、—OH、—COOH的配位络合,与Si—O—Si的π-π相互作用.5次吸附-解吸实验后,ATC对U(Ⅵ)的吸附率在86.71%以上.  相似文献   

8.
利用剩余污泥分别在300、350、400℃下热处理制备了生物炭S300、S350、S400,对其进行了物性表征,并分析了对实际印染废水的吸附特性。结果表明,随着反应温度的升高,污泥发生了炭化反应,污泥网络结构逐渐被破坏,生物炭表面呈现粗糙不平且不规则的空间结构,其比表面积与孔容积逐渐增大,S400的比表面积达到157.4 m2/g。在28℃,投加量为1 g/L,吸附时间为60 min的条件下,S400对印染废水的脱色率为75%,COD去除率为45%,出水COD为36.4 mg/L,达到了GB 18918-2002的一级A标准。生物炭对印染废水的准2级吸附动力学拟合度更高,其吸附行为更符合准2级吸附动力学,并均以化学吸附为主。  相似文献   

9.
以污泥与含磷试剂(磷酸二氢钾、磷酸二氢钙)为原料制备磷基生物炭(BC600、BC650)并用于废水中Pb2+的去除.通过单因素静态吸附实验分别研究了吸附剂添加量、含Pb2+废水初始pH、浓度和吸附时间等对BC600和BC650吸附水中Pb2+的影响.结果表明,含Pb2+废水初始pH显著影响BC600和BC650的吸附效率,在pH=5时,BC600和BC650的吸附量分别为37 mg/g和10 mg/g.吸附动力学和吸附等温模型拟合结果表明BC600符合二级动力学模型和Langmuir吸附等温模型,BC650符合一级动力学模型和Freundlich吸附等温模型.结合XRD与SEM分析,BC600和BC650对Pb2+的吸附过程包含物理-化学吸附协同作用,其中BC600以化学吸附为主,BC650以物理吸附为主.  相似文献   

10.
随着经济全球化的飞速发展,城市污水处理中排放的污泥量日益增加,预计到2025年我国市政污泥年产量将超过9000万吨。市政污泥中含有的病原微生物、有机物及重金属,会对环境和人体健康造成严重危害。污泥衍生的生物炭材料因其较大的比表面积、优良的孔隙结构以及丰富的含氧基团,被广泛应用于废水吸附处理领域,实现了固体废物再利用和去除污染的双重目的,做到以废治废,达到生态与发展的双赢。本文系统总结了污泥生物质炭的制备及改性方法、综述了其对废水中重金属、染料、无机盐、抗生素、酚类等的应用及其吸附机理,指出未来污泥生物炭的发展方向和需攻克的难题,努力形成绿色低碳的资源化处理体系。  相似文献   

11.
通过城市污泥热解制备污泥生物炭(BC),采用FeCl_3溶液浸渍污泥生物炭后制备出磁性污泥生物炭(MBC),对比了BC与MBC去除水溶液中Cd(Ⅱ)的能力。考察溶液初始pH、吸附时间、吸附温度以及Cd(Ⅱ)初始浓度对BC和MBC去除Cd(Ⅱ)效果的影响。结果表明,BC和MBC均符合拟二级动力学吸附模型;Langmuir吸附等温模型能够更好地描述BC和MBC去除Cd(Ⅱ)的过程。在溶液初始pH为6.0,生物炭投加量为10 mg,Cd(Ⅱ)质量浓度为10~150 mg/L的溶液25 mL,吸附时间为360 min,温度为25℃的最佳条件下,BC和MBC对Cd(Ⅱ)最大的吸附量分别为76.93 mg/g和167.42 mg/g。经过5次吸附解吸试验,MBC的Cd(Ⅱ)去除率保持在90%以上,BC的Cd(Ⅱ)去除率在55%左右,说明MBC具有更好应用于去除含Cd(Ⅱ)废水的能力。  相似文献   

12.
以垃圾焚烧发电厂垃圾渗滤液处理后产生的污泥为原料,热解制备垃圾渗滤液污泥基生物炭(Landfill leachate sludge-derived biochar,LLSDB)。单因素实验发现,在LLSDB热解温度为500、600℃,投加量为0.3、0.3 g,吸附温度为40、20℃,Pb(Ⅱ)、Cd(Ⅱ)的溶液初始浓度分别为1 000、200 mg/L时,Pb(Ⅱ)、Cd(Ⅱ)的去除率分别达到96.4%和94.9%。竞争吸附实验说明Cd(Ⅱ)对Pb(Ⅱ)的吸附起一定促进作用,而Pb(Ⅱ)对Cd(Ⅱ)的吸附起强烈抑制作用。通过吸附等温线、电镜扫描以及X射线衍射分析,推测其吸附机理:LLSDB中碳酸盐和氢氧化物热解生成氧化物,氧化物在水溶液中生成氢氧化物,与Pb(Ⅱ)、Cd(Ⅱ)发生置换反应及竞争反应,最终生成PbCO3、Cd(OH)2,沉淀在LLSDB的表面,即LLSDB对Pb(Ⅱ)和Cd(Ⅱ)的吸附,浓度低时遵循线性分配,以物理吸附为主;浓度高时发生一系列化学反应,以化学吸附为主。  相似文献   

13.
14.
于秀明  朱文韬  杨斌  胡昊  杨金辉  周书葵 《精细化工》2023,40(12):2553-2564+2576
社会经济的发展和人类活动的进行导致固体废弃物数量和种类不断增加,固体废弃物资源化成为世界范围内的热点话题。在双碳背景下,重视循环经济的发展,废弃物资源化有较大的提升空间。核工业核技术的迅速发展产生了含铀放射性废水,利用固体废弃物制成吸附材料对含铀(Ⅵ)废水处理可达到“以废治废”的目的,缓解环境污染问题,利于可持续发展。归纳了一些主要的可应用在除铀方面的固体废弃物材料,如农林业固体废弃物、工业固体废弃物以及城市固体废弃物;介绍了固体废弃物吸附材料的制备和改性方法以及除铀机理;并对今后铀吸附材料的研究方向进行了展望,指出今后铀吸附材料应向高效吸附、绿色环保、高附加值方向发展。  相似文献   

15.
为提高市政污泥生物炭对水中磷的吸附,将市政污泥在700℃下制备的热解生物炭(BC700)用FeCl3溶液进行磁化改性,制备磁性生物炭(MBC700),表征改性生物炭的组成、官能团分布和表面性质,考察其对典型水中磷的吸附效果和脱附后重复利用性.结果 表明,改性后铁氧化物已成功负载在生物炭的表面和孔隙中.在温度25℃、pH...  相似文献   

16.
李俊生  郭小瑞  徐嘉伦  谷芳  夏至  左金龙 《应用化工》2023,(4):1264-1269+1275
综述了生物炭吸附处理氨氮废水的研究现状,介绍了物理改性、酸碱改性、金属离子改性和生物改性生物炭,光催化与生物炭联合技术,生物炭固定化微生物技术,生物炭三维电极技术在氨氮废水处理领域的应用进展,详细地介绍了各种方法对氨氮废水的处理效果及其优缺点。展望了生物炭吸附法在氨氮废水处理领域未来的研究重点和发展趋势。  相似文献   

17.
将硫酸钙作为添加剂与污泥共热解制备硫酸钙/污泥基生物炭(SBC),并使用BET、SEM、FTIR和XRD表征,研究了其对Pb~(2+)的吸附去除特性。结果表明,硫酸钙已负载在生物炭表面并对去除Pb~(2+)有促进作用。当温度为25℃,初始pH为5,SBC投加量为0.4 g/L,吸附时间为240 min时,Pb~(2+)去除率可达99.69%。Langmuir等温吸附模型能更好地描述SBC对Pb~(2+)的吸附过程,最大吸附量为280.899 mg/g;SBC对Pb~(2+)的吸附更符合准二级动力学模型,该吸附过程可能以化学吸附为主;热力学分析表明SBC对Pb~(2+)的吸附是自发的吸热过程,升温有利于吸附。  相似文献   

18.
用废弃生物质制备生物炭以期提供处理含重金属废水的低成本、环境友好的材料。实验探讨了生物质炭的制备及生物质炭处理含Cr(Ⅵ)废水的影响因素。结果表明,相同的制备条件下,玉米芯生物炭的吸附效果优于松子壳生物炭。对于200mL50mg/L的含Cr(Ⅵ)废水,当pH=2,转速为100r/min时,室温下0.2g生物质炭在10min内对Cr(Ⅵ)的吸附率可达99.20%。吸附反应较好地符合拟二级动力学。在功率为800W的定频微波中对吸附后的样品进行解吸,30min后样品中基本不存在Cr(Ⅵ)。  相似文献   

19.
采用污水处理厂剩余污泥为原料,制备了磁性污泥基生物炭复合材料,采用扫描电镜、能谱分析、傅里叶红外光谱等手段进行了表征,并考察了所制备复合材料对甲基橙的吸附性能.结果表明,所制备的复合材料在甲基橙初始pH=3.0,生物炭投加量为0.8 g/L时,磁性生物炭对甲基橙呈现了良好的吸附性能.经过5次吸附解吸试验,磁性污泥基生物...  相似文献   

20.
以冷冻干燥法制备海水小球藻和三角褐指藻藻粉,考察pH、时间、温度、初始U(Ⅵ)浓度、盐浓度等对两种微藻在水溶液中吸附U(Ⅵ)的影响,并由Langmuir模型拟合结果分析得出海水小球藻和三角褐指藻对U(Ⅵ)的吸附量最高分别达1 314.0 mg/g和1 450.0 mg/g。采用BM、SEM、EDS、FTIR等方法对两种微藻吸附U(Ⅵ)前后形貌及结构进行表征,分析可能存在的吸附机理。此外,模拟深海高压环境考察藻粉对U(Ⅵ)的吸附,得出2种藻粉在一定超高压环境下U(Ⅵ)吸附性能良好,且三角褐指藻优于海水小球藻。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号