共查询到18条相似文献,搜索用时 78 毫秒
1.
本文基于自然语言处理技术和深度学习算法,挖掘运营商投诉工单中结构化和非结构化内容的语义特征规律,构建了面向运营商网络投诉派单场景的大规模多标签智能分类模型TBF。本文使用包括编码器模块和解码器模块的端到端框架构建模型。编码器模块使用嵌入层将输入数据中的原始字段转化成向量表示后,使用文本卷积神经网络和双向长短期记忆网络分别对不同数据类型字段的向量表示进行特征抽取并使用前馈神经网络进行特征融合。解码器模块是多层感知机分类器组成的分类器链结构,用来接收编码器模块的融合结果并预测输出各层级投诉类别标签,从而实现对网络投诉工单的智能分类,达到节约人力成本、提升派单质效的数智化转型目的。通过在运营商实际生产环境中的测试和应用,取得了较为满意的效果,成功助力运营商的客户满意度改善。 相似文献
2.
与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作。文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用。过去几年,使用深度学习方法进行文本分类的研究激增并取得了较好效果。文中简要介绍了基于传统模型的文本分类方法和基于深度学习的文本分类方法,回顾了先进文本分类方法并重点关注了其中基于深度学习的模型,对近年来用于文本分类的深度学习模型的研究进展以及成果进行介绍和总结,并对深度学习在文本分类领域的发展趋势和研究的难点进行了总结和展望。 相似文献
3.
针对深度神经网络模型仅学习当前指代链语义信息忽略了单个指代链识别结果的长期影响问题,提出一种结合深度强化学习(deep reinforcement learning)的维吾尔语人称代词指代消解方法.该方法将指代消解任务定义为强化学习环境下顺序决策过程,有效利用之前状态中先行语信息判定当前指代链指代关系.同时,采用基于整体奖励信号优化策略,相比于使用损失函数启发式优化特定的单个决策,该方法直接优化整体评估指标更加高效.最后在维吾尔语数据集进行实验,实验结果显示,该方法在维吾尔语人称代词指代消解任务中的F值为85.80%.实验结果表明,深度强化学习模型能显著提升维吾尔语人称代词指代消解性能. 相似文献
4.
《电子技术与软件工程》2019,(6)
随着深度学习的发展,基于深度学习的数据预测将发挥至关重要的作用。准确的数据预测结果不仅对系统的调度运行和生产有很大影响,而且有助于提高系统的稳定性和安全性。但在进行多变量时序预测时,传统时间序列方法所预测出的结果误差较大,训练时间也较长。针对以上缺陷,本文使用一种基于深度学习神经网络的多变量时序数据预测方法,该方法基于长短期记忆(LSTM)神经网络,并使用该方法对某地电力负荷值进行预测。通过实验证明本文所提出的方法预测结果较为精准。 相似文献
5.
6.
《电子技术与软件工程》2017,(21)
软件工程的实施,使得软件质量有了明显的提升,在取得成效之余,不应忽视代码审查的重要作用,本文阐述了代码审查的不可替代性并给出了软件工程实施过程中的具体做法。 相似文献
7.
频谱感知可以提高认知无线电网络的频谱利用率,但传统的频谱感知方法不能在复杂的通信环境中进行快速的频谱感知.因此,借助计算机计算能力的提升,将深度学习应用于频谱感知,以快速、智能地获得感知结果.首先,介绍在频谱感知中应用较为广泛的深度学习模型,包括卷积神经网络、长短期记忆网络和深度强化学习;其次,对近几年基于深度学习频谱... 相似文献
8.
徐思琰 《电子产品可靠性与环境试验》2009,27(6):36-40
基于故障模式的代码审查方法是发现代码中存在的逻辑缺陷、提高软件测试工作效率的有效方法之一。它可以根据成熟的故障模式,对代码逻辑表达的正确性、代码结构和实现的合理性等方面进行有针对性的检查。大量的工程实践表踢。这种方法能够帮助测试人员快速发现代码中存在的缺陷。是提高软件测试工作效率和改进软件质量的有效方法。 相似文献
9.
主要对机器学习中深度学习内应用较广、效果较好的一种Attention注意力机制的相关知识进行了总结。首先从背景、原理、分类、比较、应用场景等方面入手,参考了多篇文献;背景方面,介绍了深度学习、自然语言处理(natural language processing,NLP)的相关技术的研究现状,并明确了Attention在其中的定位;原理方面,由于self-attention的优越性和广泛应用,主要对self-attention进行了阐述;最后对不同的Attention类别进行了整理,依据不同的分类标准,划分了6大类别,并分别对其进行介绍。此外,将经典的卷积神经网络(convolutional neural network,CNN)、循环神经网络(recurrent neural network,RNN)与Attention机制进行对比,进一步明确了Attention在当前的深度学习中的地位,最后对应用场景进行了简要的介绍。 相似文献
10.
随着大数据的分析与研究的热潮,深度学习已经成为人工智能技术不可分割的一部分,如自然语言处理,计算机视觉,语音识别等技术的发展都与深度学习息息相关。大量研究表明,深度学习已经成为一种趋势,是人工智能技术不断发展的不竭动力。因此,文章主要对深度学习以及其在自然语言处理中的文本情感分析技术上的研究与应用做一个简单的介绍,首先介绍情感分析和深度学习的概念,然后阐述一下深度学习在情感分析技术上的研究和应用,最后总结一下深度学习对情感分析技术的影响。 相似文献
11.
Spectrum prediction is a promising technology to infer future spectrum state by exploiting inherent patterns of historical spectrum data.In practice,for a given spectrum band of interest,when facing relatively scarce historical data,spectrum prediction based on traditional learning methods does not work well.Thus,this paper proposes a cross-band spectrum prediction model based on transfer learning.Firstly,by analysing service activities and computing the distances between various frequency points based on Dynamic Time Warping,the similarity between spectrum bands has been verified.Next,the features,which mainly affect the performance of transfer learning in the crossband spectrum prediction,are explored by leveraging transfer component analysis.Then,the effectiveness of transfer learning for the cross-band spectrum prediction has been demonstrated.Further,experimental results with real-world spectrum data demonstrate that the performance of the proposed model is better than the state-of-theart models when the historical spectrum data is limited. 相似文献
12.
针对维吾尔语人称代词指代现象,提出利用双向长短时记忆网络(Bi-directional long short term memory,Bi-LSTM)的深度学习机制进行基于深层语义信息的维吾尔语人称代词指代消解.首先将富含语义和句法信息的word embedding向量作为Bi-LSTM的输入,挖掘维吾尔语隐含的上下文语义层面特征;其次对维吾尔语人称代词指代现象进行探索,提取针对人称代词指代研究的24个hand-crafted特征;然后利用多层感知器(multilayer perception,MLP)融合Bi-LSTM学习到的上下文语义层面特征与hand-crafted特征;最后使用融合的两类特征训练softmax分类器完成维吾尔语人称代词指代消解任务.实验结果表明,充分利用两类特征的优势,维吾尔语人称代词指代消解的F1值达到76.86%.实验验证了Bi-LSTM与单向LSTM、浅层机器学习算法的SVM和ANN相比更具备挖掘隐含上下文深层语义信息的能力,而hand-crafted层面特征的引入,则有效提高指代消解性能. 相似文献
13.
为了提升数字化法律文书知识库的建设效率,文中提出了基于深度学习理论的法律文书识别方法。该方法基于长短期记忆(LSTM)网元结构构建深度神经网络,引入遗忘门进行网元的状态更新,使用Softmax函数作为非线性传播函数,实现自然语言中的实体识别。经测试,该方法可以有效的提取法律文书中的当事人姓名、案由和审判机构等;在文中所采用的测试集上,相较于CRFs算法,该方法在准确率、召回率和F上均可以取得约10%的提升。 相似文献
14.
15.
深度学习方面自然语言处理技术目前已经成为主要研究热点。从深度学习和自然语言处理的概念出发,深入研究基于深度学习方面自然语言处理技术的优势以及面临的挑战,并在此基础之上对其发展进行了展望。 相似文献
16.
视频中的人体动作识别是计算机视觉领域内一个充满挑战的课题.不论是在视频信息检索、日常生活安全、公共视频监控,还是人机交互、科学认知等领域都有广泛的应用.本文首先简单介绍了动作识别的研究背景、意义及其难点,接着从模型输入信号的类型和数量、是否结合了传统特征提取方法、模型预训练三个维度详细综述了基于深度学习的动作识别方法,及比较分析了它们在UCF101和HMDB51这两个数据集上的识别效果.最后分别从视频预处理、视频中人体运动信息表征、模型学习训练这三个角度对未来动作识别可能的发展方向进行了论述. 相似文献
17.
18.
随着电子商务的崛起,越来越多的消费者选择通过网购来获取所需的商品。消费者评论信息中包含了对商品、物流等电子商务各方面的满意程度,这就使得在线商品评论信息成为研究电子商务满意度的重要参考依据。因此充分分析商品评论中的消费者满意程度,具有巨大的商业价值和社会价值。本文从意见挖掘的角度出发,提出了一种基于深度学习的电子商务满意度评估方法,旨在为消费者进行网购决策时提供一些指导建议。 相似文献