共查询到14条相似文献,搜索用时 150 毫秒
1.
基于核熵主成分分析方法的统计模型仅利用正常工况下数据进行建模,而忽略了监控系统数据库中一些已知类别的先前故障数据。为了利用先前故障数据中包含的故障信息来增强故障检测性能,提出了一种故障判别增强KECA (fault discriminant enhanced kernel entropy component analysis, FDKECA)算法。该法通过采用无监督学习和监督学习方法建立模型,同时监测非线性核熵主成分(kernel entropy component, KEC)和故障判别成分(fault discriminant component, FDC)两类数据特征。此外,利用贝叶斯推理将相应的监视统计信息转换为故障概率,并通过加权两个子模型的结果来构建基于总体概率的监视统计量。通过数值仿真和田纳西伊斯曼(Tennessee Eastman, TE)过程仿真实验,证明和传统KECA相比,FDKECA算法能够有效利用故障数据提高故障检测率。 相似文献
2.
针对化工过程数据复杂、非线性的特点,提出一种基于核熵成分分析(KECA)的化工过程故障监测算法。首先,KECA算法按照Renyi熵值的大小选取特征值及特征向量,相比传统的KPCA监测算法,其保留主元个数更少,可以有效减少运算量。同时,仿真研究表明KECA算法选取的主元具有角度结构特性,据此,提出一种新的统计量--CS(Cauchy-Schwarz)统计量,其对应到核特征空间中即为向量间的角度余弦值,可以较好表述不同概率密度分布之间的相似度。最后,将KECA和KPCA算法分别应用于TE(Tennessee Eastman)过程,结果表明KECA在故障检测延迟与检出率相比KPCA都有很大的优势。 相似文献
3.
在复杂的大规模工业过程系统中,实时过程监视、优化计算时间和降低运行内存是实现最终产品质量的最关键和最具挑战性的任务,提出一种在线压缩核熵成分分析(online reduced kernel entropy component analysis, ORKECA)的自适应故障检测算法。首先计算训练样本的核矩阵,根据保留的特征值与特征向量选择有代表性的观测值,构造一个符合全局数据信息特征的压缩集,计算监测统计数据的平方预测误差(squared prediction error, SPE),并利用核密度估计确定控制限。对于在线实时采集的数据,计算该数据的统计量并与压缩集的控制限比较,根据过程状态分析核熵成分分析(kernel entropy component analysis, KECA)模型是否需要进行更新,可以有效提高实时监测过程数据的性能。最后,以一个非线性数值案例及TE过程数据对该方法进行仿真数值分析。结果表明,所提的方法具有有效的可行性。 相似文献
4.
传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大小选取核主成分,并建立独立成分分析(ICA)模型。对训练样本求 和 统计量,并利用核密度估计计算统计量的控制限。计算测试数据对训练数据的核矩阵,将其投影在ICA模型上并计算测试样本的统计量,统计量超出控制限的样本即可被识别为故障样本。将该方法用于非线性数值例子和Tennessee Eastman(TE)过程的故障检测,并与传统的核主成分分析(KPCA)、核熵成分分析(KECA)和KICA方法进行对比,表明KEICA的监测效果优于其他三种方法。 相似文献
5.
传统核独立成分分析(KICA)依据特征值的大小进行降维,但是特征值大并不一定取得的信息熵贡献度也是最大的。针对这个问题,提出一种基于核熵独立成分分析(KEICA)的故障检测方法。将训练数据集投影在高维核空间,通过对数据信息熵的贡献大小选取核主成分,并建立独立成分分析(ICA)模型。对训练样本求 和 统计量,并利用核密度估计计算统计量的控制限。计算测试数据对训练数据的核矩阵,将其投影在ICA模型上并计算测试样本的统计量,统计量超出控制限的样本即可被识别为故障样本。将该方法用于非线性数值例子和Tennessee Eastman(TE)过程的故障检测,并与传统的核主成分分析(KPCA)、核熵成分分析(KECA)和KICA方法进行对比,表明KEICA的监测效果优于其他三种方法。 相似文献
6.
7.
针对传统基于核主成分分析的故障检测方法提取非线性特征时只考虑全局结构而忽略局部近邻结构保持的问题, 提出基于改进核主成分分析的故障检测与诊断方法。改进核主成分分析方法将流形学习保持局部结构的思想融入核主成分分析的目标函数中, 使得到的特征空间不仅具有原始样本空间的整体结构, 还保持样本空间相似的局部近邻结构, 可以包含更丰富的特征信息。在此基础上, 本文使用改进核主成分分析方法把原始变量空间映射到特征空间, 使用费舍尔判别分析在特征空间中构建距离统计量并通过核密度估计确定其控制限, 进一步利用相似度的性能诊断方法识别发生的故障类型。采用Tennessee Eastman过程故障检测数据集进行的仿真实验表明所提方法可以取得较好的效果。 相似文献
8.
针对一类非线性多模态的化工过程,提出一种基于概率核主元的混合模型(PKPCAM),并利用贝叶斯推理策略进行过程监控与故障诊断.在提出的模型中, 每个操作模态由一个局部化的概率核主元分量描述,从而构建的一系列分量对应了不同的操作模态.首先,将过程数据从原始的度量空间投影到高维特征空间;其次,在该特征空间建立概率主元混合模型,从概率角度刻画数据集的多个局部分量特征;最后,在提取的核主元分量内获得测试样本的后验概率,结合模态内的马氏距离贡献度,提出基于贝叶斯推理的全局概率指标进行故障检测,同时利用模态内变量的相对贡献度,基于全局贡献度指标进行故障诊断.利用TEP仿真平台,与基于k均值聚类的次级主元分析和核主元分析的方法进行了对比分析,验证了提出的贝叶斯推理的PKPCAM方法对非线性多模态过程进行故障检测与诊断的可行性和有效性. 相似文献
9.
针对标准KPCA(kernel principal component analysis)不适合大样本分析的缺点,提出了一种基于特征子空间的KPCA(FS_KPCA)及其故障检测与诊断方法,该方法通过构建具有较小维数的特征子空间上的正交基来简化核矩阵,从而降低KPCA的计算复杂性.与标准KPCA方法相比,FS_KPCA方法具有更高的计算效率且只需较小的计算机存储空间.通过非等温连续反应釜过程的故障检测与诊断的应用实例,说明了本算法的有效性. 相似文献
10.
传统核主元分析法(KPCA)是一种广泛应用的非线性化工过程故障检测方法,但是其未充分利用过程数据的概率分布信息,往往难以有效检测过程中的微小故障。针对传统KPCA方法的局限性,本文提出了一种基于加权概率相关核主元分析(WPRKPCA)的非线性化工过程微小故障检测方法。与传统KPCA方法监控核成分的变化不同,该方法利用Kullback Leibler散度(KLD)度量核成分的概率分布变化,进而建立基于KLD成分的统计监控模型,以充分挖掘过程数据所包含的概率信息。进一步考虑到不同KLD成分承载故障信息的差异性,该方法设计了一种基于核密度估计的指数加权策略,根据KLD成分描述故障信息程度的差异分配相应的权值,以加强监控模型对微小故障检测的灵敏性。在一个数值例子和连续搅拌反应器(CSTR)系统上的仿真结果表明,本文所提方法具有比传统KPCA方法更好的微小故障检测性能。 相似文献
11.
传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差。然后设计了一种基于测试样本与训练样本之间距离的加权策略构建加权改进残差,对含有较强微小故障信息的样本赋予较大权值,以增强故障样本的影响。最后,采用基于测量变量与监控统计量之间的加权互信息构建贡献图以识别故障源变量。在连续搅拌反应釜和田纳西伊斯曼(Tennessee Eastman, TE)化工过程上的仿真结果表明,所提方法具有良好的微小故障检测与识别性能。 相似文献
12.
针对基于不同展开方式的多向主元分析(MPCA)方法在线应用时各自存在的缺陷,提出一种改进的基于变量展开的MPCA方法,实现间歇过程的在线监控与故障诊断。该方法采用随时间更新的主元协方差代替固定的主元协方差进行T2统计量的计算,充分考虑了主元得分向量的动态特性;同时引入主元显著相关变量残差统计量,避免SPE统计量的保守性,且该统计量能提供更详细的过程变化信息,对正常工况改变或过程故障引起的T2监控图变化有一定的识别能力;最后提出一种随时间变化的贡献图计算方法用于在线故障诊断。该方法和MPCA方法的监控性能在一个青霉素发酵仿真系统上进行了比较。仿真结果表明:该方法具有较好的监控性能,能及时检测出过程存在的故障,且具有一定的故障识别和诊断能力。 相似文献
13.
化工过程中大量的生产数据反应了生产过程的内在变化和系统的运行状况,基于数据驱动的统计方法可以有效地对生产过程进行监控。对于复杂的化工和生化过程,其过程变量之间的相关关系往往具有很强的非线性特性,传统的线性统计过程监控方法显得无能为力。本文提出了基于核Fisher判别分析的非线性统计过程监控方法,首先利用非线性核函数将数据从原始空间映射到高维空间,在高维空间中利用线性的Fisher判别分析方法提取数据最优的Fisher特征矢量和判别矢量来实现过程监控与故障诊断,能有效地捕获过程变量之间的非线性关系,通过对流化催化裂化(FCCU)过程的仿真表明该方法的有效性。 相似文献
14.
现代工业产品的生产往往需要多个生产阶段,多阶段生产过程的故障检测成为一个重要问题。多阶段过程数据具有多中心、各工序数据结构不同等特征。针对多阶段过程数据的特征,提出了基于双近邻标准化和主元分析的故障检测方法(DLNS-PCA)。首先寻找样本的双层局部近邻集;其次使用双层局部近邻集的信息标准化样本,得到标准样本;最后在标准样本集上使用主元分析方法进行故障检测。双局部近邻标准化能够将各阶段数据的中心平移到同一点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的数据。进行了青霉素发酵过程故障检测实验,实验结果表明DLNS-PCA方法相对于PCA、KPCA、FDkNN等方法对多阶段过程故障具有更高的检测率。DLNS-PCA方法提高了多阶段过程故障检测能力。 相似文献